This was trying to constrain a physical register. By the verifier's
understanding, it's impossible to have a 1-bit copy to vcc/vcc_lo so
don't try to handle physregs.
This solves selection failures with generated selection patterns,
which would fail due to inferring the SGPR reg bank for virtual
registers with a set register class instead of VCC bank. Use
instruction selection would constrain the virtual register to a
specific class, so when the def was selected later the bank no longer
was set to VCC.
Remove the SCC reg bank. SCC isn't directly addressable, so it
requires copying from SCC to an allocatable 32-bit register during
selection, so these might as well be treated as 32-bit SGPR values.
Now any scalar boolean value that will produce an outupt in SCC should
be widened during RegBankSelect to s32. Any s1 value should be a
vector boolean during selection. This makes the vcc register bank
unambiguous with a normal SGPR during selection.
Summary of how this should now work:
- G_TRUNC is always a no-op, and never should use a vcc bank result.
- SALU boolean operations should be promoted to s32 in RegBankSelect
apply mapping
- An s1 value means vcc bank at selection. The exception is for
legalization artifacts that use s1, which are never VCC. All other
contexts should infer the VCC register classes for s1 typed
registers. The LLT for the register is now needed to infer the
correct register class. Extensions with vcc sources should be
legalized to a select of constants during RegBankSelect.
- Copy from non-vcc to vcc ensures high bits of the input value are
cleared during selection.
- SALU boolean inputs should ensure the inputs are 0/1. This includes
select, conditional branches, and carry-ins.
There are a few somewhat dirty details. One is that G_TRUNC/G_*EXT
selection ignores the usual register-bank from register class
functions, and can't handle truncates with VCC result banks. I think
this is OK, since the artifacts are specially treated anyway. This
does require some care to avoid producing cases with vcc. There will
also be no 100% reliable way to verify this rule is followed in
selection in case of register classes, and violations manifests
themselves as invalid copy instructions much later.
Standard phi handling also only considers the bank of the result
register, and doesn't insert copies to make the source banks
match. This doesn't work for vcc, so we have to manually correct phi
inputs in this case. We should add a verifier check to make sure there
are no phis with mixed vcc and non-vcc register bank inputs.
There's also some duplication with the LegalizerHelper, and some code
which should live in the helper. I don't see a good way to share
special knowledge about what types to use for intermediate operations
depending on the bank for example. Using the helper to replace
extensions with selects also seems somewhat awkward to me.
Another issue is there are some contexts calling
getRegBankFromRegClass that apparently don't have the LLT type for the
register, but I haven't yet run into a real issue from this.
This also introduces new unnecessary instructions in most cases, since
we don't yet try to optimize out the zext when the source is known to
come from a compare.
Mostly use SReg_32 instead of SReg_32_XM0 for arbitrary values. This
will allow the register coalescer to do a better job eliminating
copies to m0.
For GlobalISel, as a terrible hack, use SGPR_32 for things that should
use SCC until booleans are solved.
llvm-svn: 375267
This is a hack until I come up with a better way of dealing with the
pseudo-register banks used for boolean values. If the use instruction
constrains the register, the selector for the def instruction won't
see that the bank was VCC. A 1-bit SReg_32 is could ambiguously have
been SCCRegBank or VCCRegBank in wave32.
This is necessary to successfully select branches with and and/or/xor
condition.
llvm-svn: 366120
The extra test change is correct, although how it arrives there is a
bug that needs work. With wave32, the test for isVCC ambiguously
reports true for an SCC or VCC source. A new allocatable pseudo
register class for SCC may be necesssary.
llvm-svn: 366119
Mostsly these would fail due to trying to use SI with a flat
operation. Implementing global loads with MUBUF is more work than
flat, so these won't be handled in the initial load selection.
Others fail because store of s64 won't initially work, as the current
set of patterns expect everything to be turned into v2i32.
llvm-svn: 365493
This was checking the size of the register with the value of the size,
which happens to be exec. Also fix assuming VCC is 64-bit to fix
wave32.
Also remove some untested handling for physical registers which is
skipped. This doesn't insert the V_CNDMASK_B32 if SCC is the physical
copy source. I'm not sure if this should be trying to handle this
special case instead of dealing with this in copyPhysReg.
llvm-svn: 364761