This version contains 2 fixes for reported issues:
1. Make sure we do not try to sink terminator instructions.
2. Make sure we bail out, if we try to sink an instruction that needs to
stay in place for another recurrence.
Original message:
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.
With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.
As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.
Fixes PR43398.
Reviewers: hsaito, dcaballe, Ayal, rengolin
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D69228
Currently every time we encounter an indirect call of a known function,
we try to evaluate the inline cost of that function. In case of a
recursion, that evaluation never stops.
The solution presented is to evaluate only the indirect call of the
function, while any further indirect calls (of a known function) will be
treated just as direct function calls, which, actually, never tries to
evaluate the call.
Fixes PR35469.
Differential Revision: https://reviews.llvm.org/D69349
Remove redundant map searches.
For example, every call to "operator[]" is actually translated to a
"find" call, and 2 consecutive calls to the operator, without changing
the map in-between, is just redundant, and inefficient.
Differential Revision: https://reviews.llvm.org/D69337
moved before another instruction.
Summary:Added an API to check if an instruction can be safely moved
before another instruction. In future PRs, we will like to add support
of moving instructions between blocks that are not control flow
equivalent, and add other APIs to enhance usability, e.g. moving basic
blocks, moving list of instructions...
Loop Fusion will be its first user. When there is intervening code in
between two loops, fusion is currently unable to fuse them. Loop Fusion
can use this utility to check if the intervening code can be safely
moved before or after the two loops, and move them, then it can
successfully fuse them.
Reviewer:kbarton,jdoerfert,Meinersbur,bmahjour,etiotto
Reviewed By:bmahjour
Subscribers:mgorny,hiraditya,llvm-commits
Tag:LLVM
Differential Revision:https://reviews.llvm.org/D70049
Summary:
Most libraries are defined in the lib/ directory but there are also a
few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining
"Component Libraries" as libraries defined in lib/ that may be included in
libLLVM.so. Explicitly marking the libraries in lib/ as component
libraries allows us to remove some fragile checks that attempt to
differentiate between lib/ libraries and tools/ libraires:
1. In tools/llvm-shlib, because
llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of
all libraries defined in the whole project, there was custom code
needed to filter out libraries defined in tools/, none of which should
be included in libLLVM.so. This code assumed that any library
defined as static was from lib/ and everything else should be
excluded.
With this change, llvm_map_components_to_libnames(LIB_NAMES, "all")
only returns libraries that have been added to the LLVM_COMPONENT_LIBS
global cmake property, so this custom filtering logic can be removed.
Doing this also fixes the build with BUILD_SHARED_LIBS=ON
and LLVM_BUILD_LLVM_DYLIB=ON.
2. There was some code in llvm_add_library that assumed that
libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or
ARG_LINK_COMPONENTS set. This is only true because libraries
defined lib lib/ use LLVMBuild.txt and don't set these values.
This code has been fixed now to check if the library has been
explicitly marked as a component library, which should now make it
easier to remove LLVMBuild at some point in the future.
I have tested this patch on Windows, MacOS and Linux with release builds
and the following combinations of CMake options:
- "" (No options)
- -DLLVM_BUILD_LLVM_DYLIB=ON
- -DLLVM_LINK_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON
- -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON
Reviewers: beanz, smeenai, compnerd, phosek
Reviewed By: beanz
Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70179
As a reminder, a "widenable branch" is the pattern "br i1 (and i1 X, WC()), label %taken, label %untaken" where "WC" is the widenable condition intrinsics. The semantics of such a branch (derived from the semantics of WC) is that a new condition can be added into the condition arbitrarily without violating legality.
Broaden the definition in two ways:
Allow swapped operands to the br (and X, WC()) form
Allow widenable branch w/trivial condition (i.e. true) which takes form of br i1 WC()
The former is just general robustness (e.g. for X = non-instruction this is what instcombine produces). The later is specifically important as partial unswitching of a widenable range check produces exactly this form above the loop.
Differential Revision: https://reviews.llvm.org/D70502
For the various trip-count tests, the classification isn't useful and makes the auto-generated tests super verbose. By skipping it, we make the auto-gen tests closer to the manually written ones. Up next: auto-genning a bunch of the existings tests.
Simple loop unswitch likes to leave around unsimplified and/or/xors. SCEV today bails out on these idioms which is unfortunate in general, and specifically for the unswitch interaction.
Differential Revision: https://reviews.llvm.org/D70459
Moving accesses in MemorySSA at InsertionPlace::End, when an instruction is
moved into a block, almost always means insert at the end of the block, but
before the block terminator. This matters when the block terminator is a
MemoryAccess itself (an invoke), and the insertion must be done before
the terminator for the update to be correct.
Insert an additional position: InsertionPlace:BeforeTerminator and update
current usages where this applies.
Resolves PR44027.
With the widenable condition construct, we have the ability to reason about branches which can be 'widened' (i.e. made to fail more often). We've got a couple o transforms which leverage this. This patch just cleans up the API a bit.
This is prep work for generalizing our definition of a widenable branch slightly. At the moment "br i1 (and A, wc()), ..." is considered widenable, but oddly, neither "br i1 (and wc(), B), ..." or "br i1 wc(), ..." is. That clearly needs addressed, so first, let's centralize the code in one place.
Summary:
Dependence anlysis has a mechanism to cache results. Thus for particular memory access the cache keep track of side effects in basic blocks. The problem is that for invariant loads dependepce analysis legally ignores many dependencies due to a special semantic rules for such loads. But later results calculated for invariant load retrived from the cache for general case acceses. As a result we have wrong dependence information causing GVN to do illegal transformation. Fixes, T42151.
Proposed solution is to disable caching of invariant loads. I think such loads a pretty rare and it doesn't make sense to extend caching mechanism for them.
Reviewers: reames, chandlerc, skatkov, morisset, jdoerfert
Reviewed By: reames
Subscribers: hiraditya, test, jdoerfert, lebedev.ri, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64405
Ensure the stride and trip count have the same type before multiplying them during reference cost calculation
Reviewed By: jdoefert
Differential Revision: https://reviews.llvm.org/D70192
This patch introduces a function pass to inject the scalar-to-vector
mappings stored in the TargetLIbraryInfo (TLI) into the Vector
Function ABI (VFABI) variants attribute.
The test is testing the injection for three vector libraries supported
by the TLI (Accelerate, SVML, MASSV).
The pass does not change any of the analysis associated to the
function.
Differential Revision: https://reviews.llvm.org/D70107
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
This caused miscompiles of Chromium (https://crbug.com/1023818). The reduced
repro is small enough to fit here:
$ cat /tmp/a.c
unsigned char f(unsigned char *p) {
unsigned char result = 0;
for (int shift = 0; shift < 1; ++shift)
result |= p[0] << (shift * 8);
return result;
}
$ bin/clang -O2 -S -o - /tmp/a.c | grep -A4 f:
f: # @f
.cfi_startproc
# %bb.0: # %entry
xorl %eax, %eax
retq
That's nicely optimized, but I don't think it's the right result :-)
> Same as D60846 but with a fix for the problem encountered there which
> was a missing context adjustment in the handling of PHI nodes.
>
> The test that caused D60846 to be reverted was added in e15ab8f277.
>
> Reviewers: nikic, nlopes, mkazantsev,spatel, dlrobertson, uabelho, hakzsam
>
> Subscribers: hiraditya, bollu, llvm-commits
>
> Tags: #llvm
>
> Differential Revision: https://reviews.llvm.org/D69571
This reverts commit 57dd4b03e4.
Summary:
This patch adds a custom ISA for vector functions for internal use
in LLVM. The <isa> token is set to "_LLVM_", and it is not attached
to any specific instruction Vector ISA, or Vector Function ABI.
The ISA is used as a token for handling Vector Function ABI-style
vectorization for those vector functions that are not directly
associated to any existing Vector Function ABI (for example, some of
the vector functions exposed by TargetLibraryInfo). The demangling
function for this ISA in a Vector Function ABI context is set to be
the same as the common one shared between X86 and AArch64.
Reviewers: jdoerfert, sdesmalen, simoll
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70089
Summary:
If there are any internal methods whose address was taken, conclude there is nothing known in relation of any other internal method and a global.
Reviewers: nlopes, sanjoy.google
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69690
Don't try to canonicalize loads to scalable vector types to loads
of integers.
This removes one assertion when trying to use a TypeSize as a parameter
to DataLayout::isLegalInteger. It does not handle the second part of the
function (which looks at bitcasts).
This patch also contains a NFC fix for Load Analysis, where a variable
initialization that would cause the same assertion is moved closer to
its use. This allows us to run the new test for InstCombine without
having to teach LocationSize to play nicely with scalable vectors.
Differential Revision: https://reviews.llvm.org/D70075
The attribute is stored at the `FunctionIndex` attribute set, with the
name "vector-function-abi-variant".
The get/set methods of the attribute have assertion to verify that:
1. Each name in the attribute is a valid VFABI mangled name.
2. Each name in the attribute correspond to a function declared in the
module.
Differential Revision: https://reviews.llvm.org/D69976
Summary:This patch fixes the following warnings uncovered by PVS
Studio:
/home/xbolva00/LLVM/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp
353 warn V612 An unconditional 'return' within a loop.
/home/xbolva00/LLVM/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp
456 err V502 Perhaps the '?:' operator works in a different way than it
was expected. The '?:' operator has a lower priority than the '=='
operator.
Authored By:etiotto
Reviewer:Meinersbur, kbarton, bmahjour, Whitney, xbolva00
Reviewed By:xbolva00
Subscribers:hiraditya, llvm-commits
Tag:LLVM
Differential Revision:https://reviews.llvm.org/D69821
Summary: A user can force a function to be inlined by specifying the always_inline attribute. Currently, thinlto implementation is not aware of always_inline functions and does not guarantee import of such functions, which in turn can prevent inlining of such functions.
Patch by Bharathi Seshadri <bseshadr@cisco.com>
Reviewers: tejohnson
Reviewed By: tejohnson
Subscribers: mehdi_amini, inglorion, hiraditya, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70014
Summary:
This patch adds Pi Blocks to the DDG. A pi-block represents a group of DDG
nodes that are part of a strongly-connected component of the graph.
Replacing all the SCCs with pi-blocks results in an acyclic representation
of the DDG. For example if we have:
{a -> b}, {b -> c, d}, {c -> a}
the cycle a -> b -> c -> a is abstracted into a pi-block "p" as follows:
{p -> d} with "p" containing: {a -> b}, {b -> c}, {c -> a}
In this implementation the edges between nodes that are part of the pi-block
are preserved. The crossing edges (edges where one end of the edge is in the
set of nodes belonging to an SCC and the other end is outside that set) are
replaced with corresponding edges to/from the pi-block node instead.
Authored By: bmahjour
Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert
Reviewed By: Meinersbur
Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto, ppc-slack
Tag: #llvm
Differential Revision: https://reviews.llvm.org/D68827
Fix cache invalidation by not guarding the dereferenced pointer cache
erasure by SeenBlocks. SeenBlocks is only populated when actually
caching a value in the block, which doesn't necessarily have to happen
just because dereferenced pointers were calculated.
-----
Related to D69686. As noted there, LVI currently behaves differently
for integer and pointer values: For integers, the block value is always
valid inside the basic block, while for pointers it is only valid at
the end of the basic block. I believe the integer behavior is the
correct one, and CVP relies on it via its getConstantRange() uses.
The reason for the special pointer behavior is that LVI checks whether
a pointer is dereferenced in a given basic block and marks it as
non-null in that case. Of course, this information is valid only after
the dereferencing instruction, or in conservative approximation,
at the end of the block.
This patch changes the treatment of dereferencability: Instead of
including it inside the block value, we instead treat it as something
similar to an assume (it essentially is a non-nullness assume) and
incorporate this information in intersectAssumeOrGuardBlockValueConstantRange()
if the context instruction is the terminator of the basic block.
This happens either when determining an edge-value internally in LVI,
or when a terminator was explicitly passed to getValueAt(). The latter
case makes this change not fully NFC, because we can now fold
terminator icmps based on the dereferencability information in the
same block. This is the reason why I changed one JumpThreading test
(it would optimize the condition away without the change).
Of course, we do not want to recompute dereferencability on each
intersectAssume call, so we need a new cache for this. The
dereferencability analysis requires walking the entire basic block
and computing underlying objects of all memory operands. This was
previously done separately for each queried pointer value. In the
new implementation (both because this makes the caching simpler,
and because it is faster), I instead only walk the full BB once and
cache all the dereferenced pointers. So the traversal is now performed
only once per BB, instead of once per queried pointer value.
I think the overall model now makes more sense than before, and there
will be no more pitfalls due to differing integer/pointer behavior.
Differential Revision: https://reviews.llvm.org/D69914
This reverts commit 15bc4dc9a8.
clang-cmake-x86_64-sde-avx512-linux buildbot reported quite a few
compile-time regressions in test-suite, will investigate.
Related to D69686. As noted there, LVI currently behaves differently
for integer and pointer values: For integers, the block value is always
valid inside the basic block, while for pointers it is only valid at
the end of the basic block. I believe the integer behavior is the
correct one, and CVP relies on it via its getConstantRange() uses.
The reason for the special pointer behavior is that LVI checks whether
a pointer is dereferenced in a given basic block and marks it as
non-null in that case. Of course, this information is valid only after
the dereferencing instruction, or in conservative approximation,
at the end of the block.
This patch changes the treatment of dereferencability: Instead of
including it inside the block value, we instead treat it as something
similar to an assume (it essentially is a non-nullness assume) and
incorporate this information in intersectAssumeOrGuardBlockValueConstantRange()
if the context instruction is the terminator of the basic block.
This happens either when determining an edge-value internally in LVI,
or when a terminator was explicitly passed to getValueAt(). The latter
case makes this change not fully NFC, because we can now fold
terminator icmps based on the dereferencability information in the
same block. This is the reason why I changed one JumpThreading test
(it would optimize the condition away without the change).
Of course, we do not want to recompute dereferencability on each
intersectAssume call, so we need a new cache for this. The
dereferencability analysis requires walking the entire basic block
and computing underlying objects of all memory operands. This was
previously done separately for each queried pointer value. In the
new implementation (both because this makes the caching simpler,
and because it is faster), I instead only walk the full BB once and
cache all the dereferenced pointers. So the traversal is now performed
only once per BB, instead of once per queried pointer value.
I think the overall model now makes more sense than before, and there
will be no more pitfalls due to differing integer/pointer behavior.
Differential Revision: https://reviews.llvm.org/D69914
It broke Chromium, causing "Instruction does not dominate all uses!" errors.
See https://bugs.chromium.org/p/chromium/issues/detail?id=1022297#c1 for a
reproducer.
> If the recurrence PHI node has a single user, we can sink any
> instruction without side effects, given that all users are dominated by
> the instruction computing the incoming value of the next iteration
> ('Previous'). We can sink instructions that may cause traps, because
> that only causes the trap to occur later, but not on any new paths.
>
> With the relaxed check, we also have to make sure that we do not have a
> direct cycle (meaning PHI user == 'Previous), which indicates a
> reduction relation, which potentially gets missed by
> ReductionDescriptor.
>
> As follow-ups, we can also sink stores, iff they do not alias with
> other instructions we move them across and we could also support sinking
> chains of instructions and multiple users of the PHI.
>
> Fixes PR43398.
>
> Reviewers: hsaito, dcaballe, Ayal, rengolin
>
> Reviewed By: Ayal
>
> Differential Revision: https://reviews.llvm.org/D69228
We had a subtle, but nasty bug in our definition of a widenable branch, and thus in the transforms which used that utility. Specifically, we returned true for any branch which included a widenable condition within it's condition, regardless of whether that widenable condition also had other uses.
The problem is that the result of the WC() call is defined to be one particular value. As such, all users must agree as to what that value is. If we widen a branch without also updating *all other users* of the WC in the same way, we have broken the required semantics.
Most of the textual diff is updating existing transforms not to leave dead uses hanging around. They're largely NFC as the dead instructions would be immediately deleted by other passes. The reason to make these changes is so that the transforms preserve the widenable branch form.
In practice, we don't get bitten by this only because it isn't profitable to CSE WC() calls and the lowering pass from guards uses distinct WC calls per branch.
Differential Revision: https://reviews.llvm.org/D69916
This patch fixes two issues noticed by inspection when going to enable the loop predication code in IndVarSimplify.
Issue 1 - Both the LoopPredication transform, and the already on by default optimizeLoopExits transform, modify the exit count of the exits they modify. (either to 0 or Infinity) Looking at the code more closely, this was not reflected into SCEV and we were instead running later transforms with incorrect SCEVs. Fixing this requires forgetting the loop, weakening a too strong assert, and updating SCEV to not pessimize results when a loop is provable untaken. I haven't been able to find a test case to demonstrate the miscompile.
Issue 2 - For modules without a data layout, we can end up with unsized pointer typed exit counts. Just bail out of this case.
I think these are the last two issues which need addressed before we enable this by default. The code has already survived a decent amount of fuzzing without revealing either of the above.
Differential Revision: https://reviews.llvm.org/D69695
We have two ways to steer creating a predicated vector body over creating a
scalar epilogue. To force this, we have 1) a command line option and 2) a
pragma available. This adds a third: a target hook to TargetTransformInfo that
can be queried whether predication is preferred or not, which allows the
vectoriser to make the decision without forcing it.
While this change behaves as a non-functional change for now, it shows the
required TTI plumbing, usage of this new hook in the vectoriser, and the
beginning of an ARM MVE implementation. I will follow up on this with:
- a complete MVE implementation, see D69845.
- a patch to disable this, i.e. we should respect "vector_predicate(disable)"
and its corresponding loophint.
Differential Revision: https://reviews.llvm.org/D69040
If the recurrence PHI node has a single user, we can sink any
instruction without side effects, given that all users are dominated by
the instruction computing the incoming value of the next iteration
('Previous'). We can sink instructions that may cause traps, because
that only causes the trap to occur later, but not on any new paths.
With the relaxed check, we also have to make sure that we do not have a
direct cycle (meaning PHI user == 'Previous), which indicates a
reduction relation, which potentially gets missed by
ReductionDescriptor.
As follow-ups, we can also sink stores, iff they do not alias with
other instructions we move them across and we could also support sinking
chains of instructions and multiple users of the PHI.
Fixes PR43398.
Reviewers: hsaito, dcaballe, Ayal, rengolin
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D69228
Same as D60846 but with a fix for the problem encountered there which
was a missing context adjustment in the handling of PHI nodes.
The test that caused D60846 to be reverted was added in e15ab8f277.
Reviewers: nikic, nlopes, mkazantsev,spatel, dlrobertson, uabelho, hakzsam
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69571
I left a memory leak in a printer pass which made LSan sad so I remove
the memory leak now to make LSan happy.
Reported and tested by vlad.tsyrklevich.
New code introduced in fe799c97fa caused clang to complain with
../lib/Analysis/MustExecute.cpp:360:34: error: lambda capture 'this' is not used [-Werror,-Wunused-lambda-capture]
GetterTy<LoopInfo> LIGetter = [this](const Function &F) {
^~~~
../lib/Analysis/MustExecute.cpp:365:44: error: lambda capture 'this' is not used [-Werror,-Wunused-lambda-capture]
GetterTy<PostDominatorTree> PDTGetter = [this](const Function &F) {
^~~~
2 errors generated.
Summary:
If a conditional branch is encountered we can try to find a join block
where the execution is known to continue. This means finding a suitable
block, e.g., the immediate post dominator of the conditional branch, and
proofing control will always reach that block.
This patch implements different techniques that work with and without
provided analysis.
Reviewers: uenoku, sstefan1, hfinkel
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68933
We were already going to all of the trouble of computing maximum constant exit counts for each loop exit, we might as well expose them through the API. The change in IndVars is mostly to demonstrate that the wired up code works, but it als very slightly strengthens the transform. The strengthened case is rather narrow though: it requires one exactly analyzeable exit, one imprecisely analyzeable exit (with the upper bound less than the precise one), and one unanalyzeable exit. I coudn't construct a reasonably stable test case.
This does increase the memory usage of the BackedgeTakenCount by a factor of 2 in the worst case.
I also noticed the loop in IndVars is O(#Exits ^ 2). This doesn't change with this patch. A future patch will cache this result inside of SCEV to avoid requering.
This is a first step in figuring out a proper API for maximum (non constant) exit counts. This may evolve a bit as we get experience with the API needs; suggestions very welcome. This patch just tried to provide a framework that we can later add maximum too in a clean and obvious way.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69216
llvm-svn: 375398
This is a common idiom which arises after induction variables are widened, and we have two or more exit conditions. Interestingly, we don't have instcombine or instsimplify support for this either.
Differential Revision: https://reviews.llvm.org/D69006
llvm-svn: 375349
Remove dead virtual functions from vtables with
replaceNonMetadataUsesWith, so that CGProfile metadata gets cleaned up
correctly.
Original commit message:
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 375094
Add an extra parameter so the backend can take the alignment into
consideration.
Differential Revision: https://reviews.llvm.org/D68400
llvm-svn: 374763
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374634
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 374539
Currently -verify-scev only fails if there is a constant difference
between two BE counts. This misses a lot of cases.
This patch adds a -verify-scev-strict options, which fails for any
non-zero differences, if used together with -verify-scev.
With the stricter checking, some unit tests fail because
of mis-matches, especially around IndVarSimplify.
If there is no reason I am missing for just checking constant deltas, I
am planning on looking into the various failures.
Reviewers: efriedma, sanjoy.google, reames, atrick
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D68592
llvm-svn: 374535
When simplifying a Phi to the unique value found incoming, check that
there wasn't a Phi already created to break a cycle. If so, remove it.
Resolves PR43541.
Some additional nits included.
llvm-svn: 374471
This patch improves the handling of pointer offset in GEP expressions where
one argument is the base pointer. isPointerOffset() is being used by memcpyopt
where current code synthesizes consecutive 32 bytes stores to one store and
two memset intrinsic calls. With this patch, we convert the stores to one
memset intrinsic.
Differential Revision: https://reviews.llvm.org/D67989
llvm-svn: 374454
Summary:
Whenever we get the previous definition, the assumption is that the
recursion starts ina reachable block.
If the recursion starts in an unreachable block, we may recurse
indefinitely. Handle this case by returning LoE if the block is
unreachable.
Resolves PR43426.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68809
llvm-svn: 374447
Move the default implementations of cache and prefetch queries to
TargetTransformInfoImplBase and delete them from NoTIIImpl. This brings these
interfaces in line with how other TTI interfaces work.
Differential Revision: https://reviews.llvm.org/D68804
llvm-svn: 374446
Re-apply 9fdfb045ae8b/r365676 with fixes for PPC and Hexagon. This involved
moving defaults from TargetTransformInfoImplBase to MCSubtargetInfo.
Rework the TTI cache and software prefetching APIs to prepare for the
introduction of a general system model. Changes include:
- Marking existing interfaces const and/or override as appropriate
- Adding comments
- Adding BasicTTIImpl interfaces that delegate to a subtarget
implementation
- Moving the default TargetTransformInfoImplBase implementation to a default
MCSubtarget implementation
Only a handful of targets use these interfaces currently: AArch64, Hexagon, PPC
and SystemZ. AArch64 already has a custom subtarget implementation, so its
custom TTI implementation is migrated to use the new facilities in BasicTTIImpl
to invoke its custom subtarget implementation. The custom TTI implementations
continue to exist for the other targets with this change. They are not moved
over to subtarget-based implementations.
The end goal is to have the default subtarget implementation defer to the system
model defined by the target. With this change, the default MCSubtargetInfo
implementation essentially returns the defaults TargetTransformInfoImplBase used
to return. Existing users of TTI defaults will hit the defaults now in
MCSubtargetInfo. Targets that define their own custom TTI implementations won't
use the BasicTTIImpl implementations that route to the subtarget.
Once system models are in place for the targets that use these interfaces, their
custom TTI implementations can be removed.
Differential Revision: https://reviews.llvm.org/D63614
llvm-svn: 374205
Summary:
The rule for the moveAllAfterMergeBlocks API si for all instructions
from `From` to have been moved to `To`, while keeping the CFG edges (and
block terminators) unchanged.
Update all the callsites for moveAllAfterMergeBlocks to follow this.
Pending follow-up: since the same behavior is needed everytime, merge
all callsites into one. The common denominator may be the call to
`MergeBlockIntoPredecessor`.
Resolves PR43569.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68659
llvm-svn: 374177
Also Revert "[LoopVectorize] Fix non-debug builds after rL374017"
This reverts commit 9f41deccc0.
This reverts commit 18b6fe07bc.
The patch is breaking PowerPC internal build, checked with author, reverting
on behalf of him for now due to timezone.
llvm-svn: 374091
* Adds a TypeSize struct to represent the known minimum size of a type
along with a flag to indicate that the runtime size is a integer multiple
of that size
* Converts existing size query functions from Type.h and DataLayout.h to
return a TypeSize result
* Adds convenience methods (including a transparent conversion operator
to uint64_t) so that most existing code 'just works' as if the return
values were still scalars.
* Uses the new size queries along with ElementCount to ensure that all
supported instructions used with scalable vectors can be constructed
in IR.
Reviewers: hfinkel, lattner, rkruppe, greened, rovka, rengolin, sdesmalen
Reviewed By: rovka, sdesmalen
Differential Revision: https://reviews.llvm.org/D53137
llvm-svn: 374042
In loop-vectorize, interleave count and vector factor depend on target register number. Currently, it does not
estimate different register pressure for different register class separately(especially for scalar type,
float type should not be on the same position with int type), so it's not accurate. Specifically,
it causes too many times interleaving/unrolling, result in too many register spills in loop body and hurting performance.
So we need classify the register classes in IR level, and importantly these are abstract register classes,
and are not the target register class of backend provided in td file. It's used to establish the mapping between
the types of IR values and the number of simultaneous live ranges to which we'd like to limit for some set of those types.
For example, POWER target, register num is special when VSX is enabled. When VSX is enabled, the number of int scalar register is 32(GPR),
float is 64(VSR), but for int and float vector register both are 64(VSR). So there should be 2 kinds of register class when vsx is enabled,
and 3 kinds of register class when VSX is NOT enabled.
It runs on POWER target, it makes big(+~30%) performance improvement in one specific bmk(503.bwaves_r) of spec2017 and no other obvious degressions.
Differential revision: https://reviews.llvm.org/D67148
llvm-svn: 374017
Doing this makes MSVC complain that `empty(someRange)` could refer to
either C++17's std::empty or LLVM's llvm::empty, which previously we
avoided via SFINAE because std::empty is defined in terms of an empty
member rather than begin and end. So, switch callers over to the new
method as it is added.
https://reviews.llvm.org/D68439
llvm-svn: 373935
This reverts SVN r373833, as it caused a failed assert "Non-zero loop
cost expected" on building numerous projects, see PR43582 for details
and reproduction samples.
llvm-svn: 373882
Summary: The assertion in getLoopGuardBranch can be a 'return nullptr'
under if condition.
Authored By: DTharun
Reviewer: Whitney, fhahn
Reviewed By: Whitney, fhahn
Subscribers: fhahn, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D66084
llvm-svn: 373857
I don't see an ideal solution to these 2 related, potentially large, perf regressions:
https://bugs.llvm.org/show_bug.cgi?id=42708https://bugs.llvm.org/show_bug.cgi?id=43146
We decided that load combining was unsuitable for IR because it could obscure other
optimizations in IR. So we removed the LoadCombiner pass and deferred to the backend.
Therefore, preventing SLP from destroying load combine opportunities requires that it
recognizes patterns that could be combined later, but not do the optimization itself (
it's not a vector combine anyway, so it's probably out-of-scope for SLP).
Here, we add a scalar cost model adjustment with a conservative pattern match and cost
summation for a multi-instruction sequence that can probably be reduced later.
This should prevent SLP from creating a vector reduction unless that sequence is
extremely cheap.
In the x86 tests shown (and discussed in more detail in the bug reports), SDAG combining
will produce a single instruction on these tests like:
movbe rax, qword ptr [rdi]
or:
mov rax, qword ptr [rdi]
Not some (half) vector monstrosity as we currently do using SLP:
vpmovzxbq ymm0, dword ptr [rdi + 1] # ymm0 = mem[0],zero,zero,..
vpsllvq ymm0, ymm0, ymmword ptr [rip + .LCPI0_0]
movzx eax, byte ptr [rdi]
movzx ecx, byte ptr [rdi + 5]
shl rcx, 40
movzx edx, byte ptr [rdi + 6]
shl rdx, 48
or rdx, rcx
movzx ecx, byte ptr [rdi + 7]
shl rcx, 56
or rcx, rdx
or rcx, rax
vextracti128 xmm1, ymm0, 1
vpor xmm0, xmm0, xmm1
vpshufd xmm1, xmm0, 78 # xmm1 = xmm0[2,3,0,1]
vpor xmm0, xmm0, xmm1
vmovq rax, xmm0
or rax, rcx
vzeroupper
ret
Differential Revision: https://reviews.llvm.org/D67841
llvm-svn: 373833
MemoryPhis should be added in the IDF of the blocks newly gaining Defs.
This includes the blocks that gained a Phi and the block gaining a Def,
if the block did not have one before.
Resolves PR43427.
llvm-svn: 373505
The static analyzer is warning about a potential null dereference, but we should be able to use cast<MemoryAccess> directly and if not assert will fire for us.
llvm-svn: 373467
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use cast<SCEVConstant> directly and if not assert will fire for us.
llvm-svn: 373465
In similar fashion to D67721, we can simplify FMA multiplications if any
of the operands is NaN or undef. In instcombine, we will simplify the
FMA to an fadd with a NaN operand, which in turn gets folded to NaN.
Note that this just changes SimplifyFMAFMul, so we still not catch the
case where only the Add part of the FMA is Nan/Undef.
Reviewers: cameron.mcinally, mcberg2017, spatel, arsenm
Reviewed By: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D68265
llvm-svn: 373459
This is intended to be similar to the constant folding results from
D67446
and earlier, but not all operands are constant in these tests, so the
responsibility for folding is left to InstSimplify.
Differential Revision: https://reviews.llvm.org/D67721
llvm-svn: 373455
Summary:
This patch adds Root Node to the DDG. The purpose of the root node is to create a single entry node that allows graph walk iterators to iterate through all nodes of the graph, making sure that no node is left unvisited during a graph walk (eg. SCC or DFS). Once the DDG is fully constructed it will have exactly one root node. Every node in the graph is reachable from the root. The algorithm for connecting the root node is based on depth-first-search that keeps track of visited nodes to try to avoid creating unnecessary edges.
Authored By: bmahjour
Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert
Reviewed By: Meinersbur
Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto, ppc-slack
Tag: #llvm
Differential Revision: https://reviews.llvm.org/D67970
llvm-svn: 373386
If a single predecessor is found, still check if the block is
unreachable. The test that found this had a self loop unreachable block.
Resolves PR43493.
llvm-svn: 373383
The check for "was there an access in this block" should be: is the last
access in this block and is it not a newly inserted phi.
Resolves new test in PR43438.
Also fix a typo when simplifying trivial Phis to match the comment.
llvm-svn: 373380
This reverts r366419 because the analysis performed is within the context of
the loop and it's only valid to add wrapping flags to "global" expressions if
they're always correct.
llvm-svn: 373184
exits"
Get a better approach in https://reviews.llvm.org/D68107 to solve the problem.
Revert the initial patch and will commit the new one soon.
This reverts commit rL372990.
llvm-svn: 373044
Summary: As discussed in the loop group meeting. With the current
definition of loop guard, we should not allow multiple loop exiting
blocks. For loops that has multiple loop exiting blocks, we can simply
unable to find the loop guard.
When getUniqueExitBlock() obtains a vector size not equals to one, that
means there is either no exit blocks or there exists more than one
unique block the loop exit to.
If we don't disallow loop with multiple loop exit blocks, then with our
current implementation, there can exist exit blocks don't post dominated
by the non pre-header successor of the guard block.
Reviewer: reames, Meinersbur, kbarton, etiotto, bmahjour
Reviewed By: Meinersbur, kbarton
Subscribers: fhahn, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D66529
llvm-svn: 373011
The static analyzer is warning about a potential null dereference, but we should be able to use cast<ExtractValueInst> directly and if not assert will fire for us.
llvm-svn: 372993
for extreme large case.
We had a case that a single loop which has 4000 exits and the average number
of predecessors of each exit is > 1000, and we found compiling the case spent
a significant amount of time on checking whether a loop has dedicated exits.
This patch adds a limit for the iterations to the check. With the patch, the
time to compile our testcase reduced from 1000s to 200s (clang release build).
Differential Revision: https://reviews.llvm.org/D67359
llvm-svn: 372990