Commit Graph

52 Commits

Author SHA1 Message Date
Valentin Clement 6110b667b0 [mlir][openacc] Conversion of data operand to LLVM IR dialect
Add a conversion pass to convert higher-level type before translation.
This conversion extract meangingful information and pack it into a struct that
the translation (D101504) will be able to understand.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D102170
2021-05-12 11:34:15 -04:00
Adrian Kuegel 2ea7fb7b1c [MLIR] Add ComplexToStandard conversion pass.
So far, only a conversion for complex::AbsOp is done, but more will be added.

Differential Revision: https://reviews.llvm.org/D101442
2021-04-28 14:17:46 +02:00
Tres Popp 34810e1b9c [mlir] Add patterns to lower Math operations to LLVM based libm calls.
Some Math operations do not have an equivalent in LLVM. In these cases,
allow a low priority fallback of calling the libm functions. This is to
give functionality and is not a performant option.

Differential Revision: https://reviews.llvm.org/D100367
2021-04-20 11:38:55 +02:00
Javier Setoain b739bada9d [mlir][ArmSVE] Cleanup dialect registration
ArmSVE dialect is behind the recent changes in how the Vector dialect
interacts with backend vector dialects and the MLIR -> LLVM IR
translation module. This patch cleans up ArmSVE initialization within
Vector and removes the need for an LLVMArmSVE dialect.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D100171
2021-04-16 15:56:51 +02:00
Alex Zinenko a776942ba1 [mlir] squash LLVM_AVX512 dialect into AVX512
The dialect separation was introduced to demarkate ops operating in different
type systems. This is no longer the case after the LLVM dialect has migrated to
using built-in vector types, so the original reason for separation is no longer
valid. Squash the two dialects into one.

The code size decrease isn't quite large: the ops originally in LLVM_AVX512 are
preserved because they match LLVM IR intrinsics specialized for vector element
bitwidth. However, it is still conceptually beneficial to have only one
dialect. I originally considered to use Tablegen multiclasses to define both
the type-polymorphic op and its two intrinsic-related instantiations, but
decided against it given both the complexity of the required Tablegen input and
its dissimilarity with the rest of ODS-defined ops, both potentially resulting
in very poor maintainability.

Depends On D98327

Reviewed By: nicolasvasilache, springerm

Differential Revision: https://reviews.llvm.org/D98328
2021-03-10 13:07:26 +01:00
Alex Zinenko 6410ee0d09 [mlir] Squash LLVM_ArmNeon dialect into ArmNeon
The two dialects are largely redundant. The former was introduced as a mirror
of the latter operating on LLVM dialect types. This is no longer necessary
since the LLVM dialect operates on built-in types. Combine the two dialects.

Reviewed By: mehdi_amini

Differential Revision: https://reviews.llvm.org/D98060
2021-03-05 23:33:32 +01:00
Rob Suderman 16abacaea9 [MLIR][TOSA] Resubmit Tosa to Standard/SCF Lowerings (const, if, while)"
Includes a lowering for tosa.const, tosa.if, and tosa.while to Standard/SCF dialects. TosaToStandard is
used for constant lowerings and TosaToSCF handles the if/while ops.

Resubmission of https://reviews.llvm.org/D97518 with ASAN fixes.

Differential Revision: https://reviews.llvm.org/D97529
2021-02-26 17:44:12 -08:00
Rob Suderman c47aa3c8de Revert [MLIR][TOSA] Added Tosa to Standard/SCF Lowerings (const, if, while)
This reverts commit a813e9be5b.

Results in an ASAN failure due to bypassing rewriter.

Differential Revision: https://reviews.llvm.org/D97518
2021-02-25 18:05:16 -08:00
Rob Suderman a813e9be5b [MLIR][TOSA] Added Tosa to Standard/SCF Lowerings (const, if, while)
Includes a lowering for tosa.const, tosa.if, and tosa.while to Standard/SCF dialects. TosaToStandard is
used for constant lowerings and TosaToSCF handles the if/while ops.

Reviewed By: silvas

Differential Revision: https://reviews.llvm.org/D97352
2021-02-25 14:35:21 -08:00
Alexander Belyaev d0cb0d30a4 [mlir] Add Complex dialect.
Differential Revision: https://reviews.llvm.org/D94764
2021-01-15 19:58:10 +01:00
Rob Suderman 1d973b7ded [MLIR][TOSA] First lowerings from Tosa to Linalg
Initial commit to add support for lowering from TOSA to Linalg. The focus is on
the essential infrastructure for these lowerings and integration with existing
passes.

Includes lowerings for a subset of operations including:
  abs, add, sub, pow, and, or, xor, left shift, right shift, tanh

Lit tests are used to validate correctness.

Differential Revision: https://reviews.llvm.org/D94247
2021-01-14 11:24:23 -08:00
Javier Setoain aece4e2793 [mlir][ArmSVE][RFC] Add an ArmSVE dialect
This revision starts an Arm-specific ArmSVE dialect discussed in the discourse RFC thread:

https://llvm.discourse.group/t/rfc-vector-dialects-neon-and-sve/2284

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D92172
2020-12-14 21:35:01 +00:00
Nicolas Vasilache 7310501f74 [mlir][ArmNeon][RFC] Add a Neon dialect
This revision starts an Arm-specific ArmNeon dialect discussed in the [discourse RFC thread](https://llvm.discourse.group/t/rfc-vector-dialects-neon-and-sve/2284).

Differential Revision: https://reviews.llvm.org/D92171
2020-12-11 13:49:40 +00:00
Alex Zinenko 119545f433 [mlir] Add conversion from SCF parallel loops to OpenMP
Introduce a conversion pass from SCF parallel loops to OpenMP dialect
constructs - parallel region and workshare loop. Loops with reductions are not
supported because the OpenMP dialect cannot model them yet.

The conversion currently targets only one level of parallelism, i.e. only
one top-level `omp.parallel` operation is produced even if there are nested
`scf.parallel` operations that could be mapped to `omp.wsloop`. Nested
parallelism support is left for future work.

Reviewed By: kiranchandramohan

Differential Revision: https://reviews.llvm.org/D91982
2020-11-24 21:12:56 +01:00
River Riddle 8a1ca2cd34 [mlir] Add a conversion pass between PDL and the PDL Interpreter Dialect
The conversion between PDL and the interpreter is split into several different parts.
** The Matcher:

The matching section of all incoming pdl.pattern operations is converted into a predicate tree and merged. Each pattern is first converted into an ordered list of predicates starting from the root operation. A predicate is composed of three distinct parts:
* Position
  - A position refers to a specific location on the input DAG, i.e. an
    existing MLIR entity being matched. These can be attributes, operands,
    operations, results, and types. Each position also defines a relation to
    its parent. For example, the operand `[0] -> 1` has a parent operation
    position `[0]` (the root).
* Question
  - A question refers to a query on a specific positional value. For
  example, an operation name question checks the name of an operation
  position.
* Answer
  - An answer is the expected result of a question. For example, when
  matching an operation with the name "foo.op". The question would be an
  operation name question, with an expected answer of "foo.op".

After the predicate lists have been created and ordered(based on occurrence of common predicates and other factors), they are formed into a tree of nodes that represent the branching flow of a pattern match. This structure allows for efficient construction and merging of the input patterns. There are currently only 4 simple nodes in the tree:
* ExitNode: Represents the termination of a match
* SuccessNode: Represents a successful match of a specific pattern
* BoolNode/SwitchNode: Branch to a specific child node based on the expected answer to a predicate question.

Once the matcher tree has been generated, this tree is walked to generate the corresponding interpreter operations.

 ** The Rewriter:
The rewriter portion of a pattern is generated in a very straightforward manor, similarly to lowerings in other dialects. Each PDL operation that may exist within a rewrite has a mapping into the interpreter dialect. The code for the rewriter is generated within a FuncOp, that is invoked by the interpreter on a successful pattern match. Referenced values defined in the matcher become inputs the generated rewriter function.

An example lowering is shown below:

```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
  %resultType = pdl.type
  %inputOperand = pdl.input
  %root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
  pdl.rewrite %root {
    pdl.replace %root with (%inputOperand)
  }
}

// is lowered to the following:
module {
  // The matcher function takes the root operation as an input.
  func @matcher(%arg0: !pdl.operation) {
    pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
  ^bb1:
    pdl_interp.return
  ^bb2:
    pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
  ^bb3:
    pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
  ^bb4:
    %0 = pdl_interp.get_operand 0 of %arg0
    pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
  ^bb5:
    %1 = pdl_interp.get_result 0 of %arg0
    pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
  ^bb6:
    // This operation corresponds to a successful pattern match.
    pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
  }
  module @rewriters {
    // The inputs to the rewriter from the matcher are passed as arguments.
    func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
      pdl_interp.replace %arg1 with(%arg0)
      pdl_interp.return
    }
  }
}
```

Differential Revision: https://reviews.llvm.org/D84580
2020-10-26 18:01:06 -07:00
Lei Zhang 36ce915ac5 Revert "Revert "[mlir] Convert from Async dialect to LLVM coroutines""
This reverts commit 4986d5eaff with
proper patches to CMakeLists.txt:

- Add MLIRAsync as a dependency to MLIRAsyncToLLVM
- Add Coroutines as a dependency to MLIRExecutionEngine
2020-10-22 15:23:11 -04:00
Mehdi Amini 4986d5eaff Revert "[mlir] Convert from Async dialect to LLVM coroutines"
This reverts commit a8b0ae3bdd
and commit f8fcff5a9d.

The build with SHARED_LIBRARY=ON is broken.
2020-10-22 19:12:19 +00:00
Eugene Zhulenev f8fcff5a9d [mlir] Convert from Async dialect to LLVM coroutines
Lower from Async dialect to LLVM by converting async regions attached to `async.execute` operations into LLVM coroutines (https://llvm.org/docs/Coroutines.html):
1. Outline all async regions to functions
2. Add LLVM coro intrinsics to mark coroutine begin/end
3. Use MLIR conversion framework to convert all remaining async types and ops to LLVM + Async runtime function calls

All `async.await` operations inside async regions converted to coroutine suspension points. Await operation outside of a coroutine converted to the blocking wait operations.

Implement simple runtime to support concurrent execution of coroutines.

Reviewed By: herhut

Differential Revision: https://reviews.llvm.org/D89292
2020-10-22 06:30:46 -07:00
Thomas Raoux 6e557bc405 [mlir][spirv] Add Vector to SPIR-V conversion pass
Add conversion pass for Vector dialect to SPIR-V dialect and add some simple
conversion pattern for vector.broadcast, vector.insert, vector.extract.

Differential Revision: https://reviews.llvm.org/D88761
2020-10-06 11:53:23 -07:00
Frederik Gossen a70f2eb3e3 [MLIR][Shape] Merge `shape` to `std`/`scf` lowerings.
Merge the two lowering passes because they are not useful by themselves. The new
pass lowers to `std` and `scf` is considered an auxiliary dialect.

See also
https://llvm.discourse.group/t/conversions-with-multiple-target-dialects/1541/12

Differential Revision: https://reviews.llvm.org/D86779
2020-09-07 14:39:37 +00:00
Kiran Chandramohan 875074c8a9 [OpenMP][MLIR] Conversion pattern for OpenMP to LLVM
Adding a conversion pattern for the parallel Operation. This will
help the conversion of parallel operation with standard dialect to
parallel operation with llvm dialect. The type conversion of the block
arguments in a parallel region are controlled by the pattern for the
parallel Operation. Without this pattern, a parallel Operation with
block arguments cannot be converted from standard to LLVM dialect.
Other OpenMP operations without regions are marked as legal. When
translation of OpenMP operations with regions are added then patterns
for these operations can also be added.
Also uses all the standard to llvm patterns. Patterns of other dialects
can be added later if needed.

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D86273
2020-08-27 19:32:15 +01:00
Thomas Raoux fbce9855e9 [mlir][NFC] Move conversion of scf to spir-v ops in their own file
Move patterns for scf to spir-v ops in their own file/folder.

Differential Revision: https://reviews.llvm.org/D82914
2020-07-01 17:06:50 -07:00
Alexander Belyaev 3813f24e97 [mlir][shape] Add a pattern to rewrite `shape.reduce` as `scf.for`.
Differential Revision: https://reviews.llvm.org/D81694
2020-06-15 17:54:50 +02:00
jerryyin 2abad3433f [mlir][rocdl] Adding vector to ROCDL dialect lowering
* Created the vector to ROCDL lowering pass
  * The lowering pass lowers vector transferOps to rocdl mubufOps
* Added unit test and functional test
2020-06-11 14:28:13 +00:00
George Mitenkov fda5192d4f [MLIR][SPIRVToLLVM] Add skeleton for SPIR-V to LLVM dialect conversion
These commits set up the skeleton for SPIR-V to LLVM dialect conversion.
I created SPIR-V to LLVM pass, registered it in Passes.td, InitAllPasses.h.
Added a pattern for `spv.BitwiseAndOp` and tests for it. Integer, float
and vector types are converted through LLVMTypeConverter.

Differential Revision: https://reviews.llvm.org/D81100
2020-06-08 18:22:42 -04:00
Frederik Gossen 3713314bfa [MLIR] Shape to standard dialect lowering
Add a new pass to lower operations from the `shape` to the `std` dialect.
The conversion applies only to the `size_to_index` and `index_to_size`
operations and affected types.
Other patterns will be added as needed.

Differential Revision: https://reviews.llvm.org/D81091
2020-06-03 16:17:03 +00:00
Wen-Heng (Jack) Chung 061fb8eb2d [mlir][gpu][mlir-cuda-runner] Refactor ConvertKernelFuncToCubin to be generic.
Make ConvertKernelFuncToCubin pass to be generic:

- Rename to ConvertKernelFuncToBlob.
- Allow specifying triple, target chip, target features.
- Initializing LLVM backend is supplied by a callback function.
- Lowering process from MLIR module to LLVM module is via another callback.
- Change mlir-cuda-runner to adopt the revised pass.
- Add new tests for lowering to ROCm HSA code object (HSACO).
- Tests for CUDA and ROCm are kept in separate directories.

Differential Revision: https://reviews.llvm.org/D80142
2020-05-28 09:08:28 -05:00
Wen-Heng (Jack) Chung 2cbbc266ec [mlir][gpu] Refactor ConvertGpuLaunchFuncToCudaCalls pass.
Due to similar APIs between CUDA and ROCm (HIP),
ConvertGpuLaunchFuncToCudaCalls pass could be used on both platforms with some
refactoring.

In this commit:

- Migrate ConvertLaunchFuncToCudaCalls from GPUToCUDA to GPUCommon, and rename.
- Rename runtime wrapper APIs be platform-neutral.
- Let GPU binary annotation attribute be specifiable as a PassOption.
- Naming changes within the implementation and tests.

Subsequent patches would introduce ROCm-specific tests and runtime wrapper
APIs.

Differential Revision: https://reviews.llvm.org/D80167
2020-05-21 08:53:47 -05:00
Mehdi Amini 5c3ebd7725 Revert "[mlir][gpu] Refactor ConvertGpuLaunchFuncToCudaCalls pass."
This reverts commit cdb6f05e2d.

The build is broken with:

  You have called ADD_LIBRARY for library obj.MLIRGPUtoCUDATransforms without any source files. This typically indicates a problem with your CMakeLists.txt file
2020-05-21 03:44:35 +00:00
Wen-Heng (Jack) Chung cdb6f05e2d [mlir][gpu] Refactor ConvertGpuLaunchFuncToCudaCalls pass.
Due to similar APIs between CUDA and ROCm (HIP),
ConvertGpuLaunchFuncToCudaCalls pass could be used on both platforms with some
refactoring.

In this commit:

- Migrate ConvertLaunchFuncToCudaCalls from GPUToCUDA to GPUCommon, and rename.
- Rename runtime wrapper APIs be platform-neutral.
- Let GPU binary annotation attribute be specifiable as a PassOption.
- Naming changes within the implementation and tests.

Subsequent patches would introduce ROCm-specific tests and runtime wrapper
APIs.

Differential Revision: https://reviews.llvm.org/D80167
2020-05-20 16:11:48 -05:00
Alex Zinenko 4ead2cf76c [mlir] Rename conversions involving ex-Loop dialect to mention SCF
The following Conversions are affected: LoopToStandard -> SCFToStandard,
LoopsToGPU -> SCFToGPU, VectorToLoops -> VectorToSCF. Full file paths are
affected. Additionally, drop the 'Convert' prefix from filenames living under
lib/Conversion where applicable.

API names and CLI options for pass testing are also renamed when applicable. In
particular, LoopsToGPU contains several passes that apply to different kinds of
loops (`for` or `parallel`), for which the original names are preserved.

Differential Revision: https://reviews.llvm.org/D79940
2020-05-15 10:45:11 +02:00
Nicolas Vasilache f1b972041a [mlir][Linalg] Start a LinalgToStandard pass and move conversion to library calls.
This revision starts decoupling the include the kitchen sink behavior of Linalg to LLVM lowering by inserting a -convert-linalg-to-std pass.

The lowering of linalg ops to function calls was previously lowering to memref descriptors by having both linalg -> std and std -> LLVM patterns in the same rewrite.

When separating this step, a new issue occurred: the layout is automatically type-erased by this process. This revision therefore introduces memref casts to perform these type erasures explicitly. To connect everything end-to-end, the LLVM lowering of MemRefCastOp is relaxed because it is artificially more restricted than the op semantics. The op semantics already guarantee that source and target MemRefTypes are cast-compatible. An invalid lowering test now becomes valid and is removed.

Differential Revision: https://reviews.llvm.org/D79468
2020-05-15 00:24:03 -04:00
Alex Zinenko 473bdaf2e8 [mlir] Move Conversion/StandardToStandard to Dialect/StandardOps/Transforms/FuncConversions
Conversion/ folders were originally intended to store patterns for
DialectA->DialectB conversions that depend on both dialects and do not
conceptually belong to either of the dialects. As such, DialectA->DialectA
conversion does not make sense under Conversion/ and should rather live with
the dialect it operates on.

Differential Revision: https://reviews.llvm.org/D79569
2020-05-13 00:33:25 +02:00
Nicolas Vasilache 462db62053 [mlir][AVX512] Start a primitive AVX512 dialect
The Vector Dialect [document](https://mlir.llvm.org/docs/Dialects/Vector/) discusses the vector abstractions that MLIR supports and the various tradeoffs involved.

One of the layer that is missing in OSS atm is the Hardware Vector Ops (HWV) level.

This revision proposes an AVX512-specific to add a new Dialect/Targets/AVX512 Dialect that would directly target AVX512-specific intrinsics.

Atm, we rely too much on LLVM’s peephole optimizer to do a good job from small insertelement/extractelement/shufflevector. In the future, when possible, generic abstractions such as VP intrinsics should be preferred.

The revision will allow trading off HW-specific vs generic abstractions in MLIR.

Differential Revision: https://reviews.llvm.org/D75987
2020-03-20 14:11:57 -04:00
Rob Suderman cd1212deff [mlir] Introduced CallOp Dialect Conversion
Summary:
Utility to perform CallOp Dialect conversion, specifically handling cases where
an argument type has changed and the corresponding CallOp needs to be updated.

Differential Revision: https://reviews.llvm.org/D76326
2020-03-18 20:07:38 -07:00
Denis Khalikov a062a3ed7f [mlir][spirv] Add ConvertGpuLaunchFuncToVulkanCallsPass
Implement a pass to convert gpu.launch_func op into a sequence of
Vulkan runtime calls. The Vulkan runtime API surface is huge so currently we
don't expose separate external functions in IR for each of them, instead we
expose a few external functions to wrapper libraries which manages
Vulkan runtime.

Differential Revision: https://reviews.llvm.org/D74549
2020-02-13 14:10:07 -05:00
Lei Zhang df71000d7d [mlir][spirv] Convert linalg.generic for reduction to SPIR-V ops
This commit adds a pattern to lower linalg.generic for reduction
to spv.GroupNonUniform* ops. Right now this only supports integer
reduction on 1-D input memref. Shader entry point ABI is queried
to make sure that the input memref's shape matches the local
workgroup's invocation configuration. This makes sure that the
workload fits in one local workgroup so that we can leverage
SPIR-V group non-uniform operations.

linglg.generic is a structured op that preserves the right level
of information. It is easier to recognize reduction at this level
than performing analysis on loops.

This commit also exposes `getElementPtr` in SPIRVLowering.h given
that it's a generally useful utility function.

Differential Revision: https://reviews.llvm.org/D73437
2020-01-31 09:37:04 -05:00
Nicolas Vasilache 5c0c51a997 Refactor dependencies to expose Vector transformations as patterns - NFC
This CL refactors some of the MLIR vector dependencies to allow decoupling VectorOps, vector analysis, vector transformations and vector conversions from each other.
This makes the system more modular and allows extracting VectorToVector into VectorTransforms that do not depend on vector conversions.

This refactoring exhibited a bunch of cyclic library dependencies that have been cleaned up.

PiperOrigin-RevId: 283660308
2019-12-03 17:52:10 -08:00
Nicolas Vasilache 6755543af5 Move Linalg Transforms that are actually Conversions - NFC
PiperOrigin-RevId: 281844602
2019-11-21 15:41:32 -08:00
Nicolas Vasilache 0b271b7dfe Refactor the LowerVectorTransfers pass to use the RewritePattern infra - NFC
This is step 1/n in refactoring infrastructure along the Vector dialect to make it ready for retargetability and composable progressive lowering.

PiperOrigin-RevId: 280529784
2019-11-14 15:40:07 -08:00
Alex Zinenko 971b8dd4d8 Move Affine to Standard conversion to lib/Conversion
This is essentially a dialect conversion and conceptually belongs to
conversions.

PiperOrigin-RevId: 280460034
2019-11-14 10:35:21 -08:00
Alex Zinenko e0d78eac23 NFC: rename Conversion/ControlFlowToCFG to Conversion/LoopToStandard
This makes the name of the conversion pass more consistent with the naming
scheme, since it actually converts from the Loop dialect to the Standard
dialect rather than working with arbitrary control flow operations.

PiperOrigin-RevId: 272612112
2019-10-03 01:35:03 -07:00
Deven Desai e81b3129b4 [ROCm] Adding pass to lower GPU Dialect to ROCDL Dialect.
This is a follow-up to the PRtensorflow/mlir#146 which introduced the ROCDL Dialect. This PR introduces a pass to lower GPU Dialect to the ROCDL Dialect. As with the previous PR, this one builds on the work done by @whchung, and addresses most of the review comments in the original PR.

Closes tensorflow/mlir#154

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/154 from deven-amd:deven-lower-gpu-to-rocdl 809893e08236da5ab6a38e3459692fa04247773d
PiperOrigin-RevId: 272390729
2019-10-02 01:50:30 -07:00
Nicolas Vasilache 252ada4932 Add lowering of vector dialect to LLVM dialect.
This CL is step 3/n towards building a simple, programmable and portable vector abstraction in MLIR that can go all the way down to generating assembly vector code via LLVM's opt and llc tools.

This CL adds support for converting MLIR n-D vector types to (n-1)-D arrays of 1-D LLVM vectors and a conversion VectorToLLVM that lowers the `vector.extractelement` and `vector.outerproduct` instructions to the proper mix of `llvm.vectorshuffle`, `llvm.extractelement` and `llvm.mulf`.

This has been independently verified to produce proper avx2 code.

Input:
```
func @vec_1d(%arg0: vector<4xf32>, %arg1: vector<8xf32>) -> vector<8xf32> {
  %2 = vector.outerproduct %arg0, %arg1 : vector<4xf32>, vector<8xf32>
  %3 = vector.extractelement %2[0 : i32]: vector<4x8xf32>
  return %3 : vector<8xf32>
}
```

Command:
```
mlir-opt vector-to-llvm.mlir -vector-lower-to-llvm-dialect --disable-pass-threading | mlir-opt -lower-to-cfg -lower-to-llvm | mlir-translate --mlir-to-llvmir | opt -O3 | llc -O3 -march=x86-64 -mcpu=haswell -mattr=fma,avx2
```

Output:
```
vec_1d:                                 # @vec_1d
# %bb.0:
        vbroadcastss    %xmm0, %ymm0
        vmulps  %ymm1, %ymm0, %ymm0
        retq
```
PiperOrigin-RevId: 262895929
2019-08-12 04:08:57 -07:00
Mahesh Ravishankar ea56025f1e Initial implementation to translate kernel fn in GPU Dialect to SPIR-V Dialect
This CL adds an initial implementation for translation of kernel
function in GPU Dialect (used with a gpu.launch_kernel) op to a
spv.Module. The original function is translated into an entry
function.
Most of the heavy lifting is done by adding TypeConversion and other
utility functions/classes that provide most of the functionality to
translate from Standard Dialect to SPIR-V Dialect. These are intended
to be reusable in implementation of different dialect conversion
pipelines.
Note : Some of the files for have been renamed to be consistent with
the norm used by the other Conversion frameworks.
PiperOrigin-RevId: 260759165
2019-07-30 11:55:55 -07:00
Nicolas Vasilache cab671d166 Lower affine control flow to std control flow to LLVM dialect
This CL splits the lowering of affine to LLVM into 2 parts:
1. affine -> std
2. std -> LLVM

The conversions mostly consists of splitting concerns between the affine and non-affine worlds from existing conversions.
Short-circuiting of affine `if` conditions was never tested or exercised and is removed in the process, it can be reintroduced later if needed.

LoopParametricTiling.cpp is updated to reflect the newly added ForOp::build.

PiperOrigin-RevId: 257794436
2019-07-12 08:44:28 -07:00
Alex Zinenko 80e2871087 Extend AffineToGPU to support Linalg loops
Extend the utility that converts affine loop nests to support other types of
loops by abstracting away common behavior through templates.  This also
slightly simplifies the existing Affine to GPU conversion by always passing in
the loop step as an additional kernel argument even though it is a known
constant.  If it is used, it will be propagated into the loop body by the
existing canonicalization pattern and can be further constant-folded, otherwise
it will be dropped by canonicalization.

This prepares for the common loop abstraction that will be used for converting
to GPU kernels, which is conceptually close to Linalg loops, while maintaining
the existing conversion operational.

PiperOrigin-RevId: 257172216
2019-07-09 05:26:50 -07:00
Lei Zhang 0782b37936 NFC: Move Standard to SPIR-V conversion to lib/Conversion
PiperOrigin-RevId: 256271759
2019-07-03 14:35:42 -07:00
Stephan Herhut 893374bfa2 Add a pass that translates a CUDA kernel function (tagged with nvvm.kernel) to
a CUBIN blob for execution on CUDA GPUs.

This is a first in a series of patches to build a simple CUDA runner to allow
experimenting with MLIR code on GPUs.

PiperOrigin-RevId: 253758915
2019-06-19 23:05:37 -07:00
Stephan Herhut a14eeacf2c Add lowering pass from GPU dialect operations to LLVM/NVVM intrinsics.
PiperOrigin-RevId: 253551452
2019-06-19 23:03:30 -07:00