* Give the right diagnostic for 'restrict' applied to a non-pointer, non-reference type.
* Don't reject 'restrict' applied indirectly to an Objective-C object pointer type (eg, through template instantiation).
llvm-svn: 178200
When Sema::RequireCompleteType() is given a class template
specialization type that then fails to instantiate, it returns
'true'. On subsequent invocations, it can return false. Make sure that
this difference doesn't change the result of
Sema::CompareReferenceRelationship, which is expected to remain stable
while we're checking an initialization sequence.
llvm-svn: 178088
template instantiation will still consider them to be definitions
if we instantiate the containing class before we get around
to parsing the friend.
This seems like a legitimate use of "late template parsed" to me,
but I'd appreciate it if someone responsible for the MS feature
would look over this.
This file already appears to access AST nodes directly, which
is arguably not kosher in the parser, but the performance of this
path matters enough that perpetuating the sin is justifiable.
Probably we ought to reconsider this policy for very simple
manipulations like this.
The reason this entire thing is necessary is that
function template instantiation plays some very gross games
in order to not associate an instantiated function template
with the class it came from unless it's a definition, and
the reason *that's* necessary is that the AST currently
cannot represent the instantiation history of individual
function template declarations, but instead tracks it in
common for the entire function template. That probably
prevents us from correctly reporting ill-formed calls to
ambiguously instantiated friend function templates.
rdar://12350696
llvm-svn: 177003
We were transforming the scope type of a pseudo-destructor expression
(e.g., the first T in x->T::~T()) as a freestanding type, which meant
that dependent template specialization types here would stay dependent
even when no template parameters were named. This would eventually
mean that a dependent expression would end up in what should be
fully-instantiated ASTs, causing IRgen to assert.
llvm-svn: 176723
designator" diagnostic with more correct and more human-friendly "cannot take
address of rvalue of type 'T'".
For the case of & &T::f, provide a custom diagnostic, rather than unhelpfully
saying "cannot take address of rvalue of type '<overloaded function type>'".
For the case of &array_temporary, treat it just like a class temporary
(including allowing it as an extension); the existing diagnostic wording
for the class temporary case works fine.
llvm-svn: 174262
have a direct mismatch between some component of the template and some
component of the argument. The diagnostic now says what the mismatch was, but
doesn't yet say which part of the template doesn't match.
llvm-svn: 174039
parameters (per C++ [temp.param]p8) when computing the type of a
reference to a non-type template parameter. Fixes <rdar://problem/13000548>.
llvm-svn: 172585
CXXScalarValueInitExpr (or an ImplicitValueInitExpr), strip it back down to an
empty pair of parentheses so that the initialization code can tell that we're
performing value-initialization.
llvm-svn: 170867
too). When instantiating a direct-initializer, if we find it has zero
arguments, produce an empty ParenListExpr rather than returning a null
expression.
llvm-svn: 170490
determine which member function would be the callee from within the template
definition, don't pass that function as a "non-member function" to
CreateOverloadedBinOp. Instead, just rely on it to select the member function
for itself.
llvm-svn: 168818
initialization, don't rebuild it. Remove a couple of hacks which were trying to
work around this. Fix the special case for one-argument CXXConstructExprs to
not apply if the one argument is a default argument.
llvm-svn: 168582
and we resolve it to a specific function based on the type which it's used as,
don't forget to mark it as referenced.
Fixes a regression introduced in r167514.
llvm-svn: 167918
would have diagnosed this at instantiation time anyway, if only we
didn't hang on all of these test cases. Fixes <rdar://problem/12629723>
llvm-svn: 167651
the base class. If the base class deduction succeeds, use those results. If
it fails, keep using the results from the derived class template deduction.
This prevents an assertion later where the type of deduction failure doesn't
match up with the template deduction info.
llvm-svn: 167550
instantiate it if it can be instantiated and implicitly define it if it can be
implicitly defined. This matches g++'s approach. Remove some cases from
SemaOverload which were marking functions as referenced when just planning how
overload resolution would proceed; such cases are not actually references.
llvm-svn: 167514
found: if an overloaded operator& is present before a template definition,
the expression &T::foo is represented as a CXXOperatorCallExpr, not as a
UnaryOperator, so we didn't notice that it's permitted to reference a non-static
data member of an unrelated class.
While investigating this, I discovered another problem in this area: we are
treating template default arguments as unevaluated contexts during substitution,
resulting in performing incorrect checks for uses of non-static data members in
C++11. That is not fixed by this patch (I'll look into this soon; it's related
to the failure to correctly instantiate constexpr function templates), but was
resulting in this bug not firing in C++11 mode (except with -Wc++98-compat).
Original message:
PR14124: When performing template instantiation of a qualified-id outside of a
class, diagnose if the qualified-id instantiates to a non-static class member.
llvm-svn: 166385
fatal error. Previously, if a fatal error was followed by a diagnostic which
was suppressed due to a SFINAETrap, we'd forget that we'd seen a fatal error.
llvm-svn: 164437
nested names as id-expressions, using the annot_primary_expr annotation, where
possible. This removes some redundant lookups, and also allows us to
typo-correct within tentative parsing, and to carry on disambiguating past an
identifier which we can determine will fail lookup as both a type and as a
non-type, allowing us to disambiguate more declarations (and thus offer
improved error recovery for such cases).
This also introduces to the parser the notion of a tentatively-declared name,
which is an identifier which we *might* have seen a declaration for in a
tentative parse (but only if we end up disambiguating the tokens as a
declaration). This is necessary to correctly disambiguate cases where a
variable is used within its own initializer.
llvm-svn: 162159
This is effectively a warning for code that violates core issue 903 & thus will
become standard error in the future, hopefully. It catches strange null
pointers such as: '\0', 1 - 1, const int null = 0; etc...
There's currently a flaw in this warning (& the warning for 'false' as a null
pointer literal as well) where it doesn't trigger on comparisons (ptr == '\0'
for example). Fix to come in a future patch.
Also, due to this only being a warning, not an error, it triggers quite
frequently on gtest code which tests expressions for null-pointer-ness in a
SFINAE context (so it wouldn't be a problem if this was an error as in an
actual implementation of core issue 903). To workaround this for now, the
diagnostic does not fire in unevaluated contexts.
Review by Sean Silva and Richard Smith.
llvm-svn: 161501
accurate by asking the parser whether there was an ambiguity rather than trying
to reverse-engineer it from the DeclSpec. Make the with-parameters case have
better diagnostics by using semantic information to drive the warning,
improving the diagnostics and adding a fixit.
Patch by Nikola Smiljanic. Some minor changes by me to suppress diagnostics for
declarations of the form 'T (*x)(...)', which seem to have a very high false
positive rate, and to reduce indentation in 'warnAboutAmbiguousFunction'.
llvm-svn: 160998
a defaulted special member function until the exception specification is needed
(using the same criteria used for the delayed instantiation of exception
specifications for function temploids).
EST_Delayed is now EST_Unevaluated (using 1330's terminology), and, like
EST_Uninstantiated, carries a pointer to the FunctionDecl which will be used to
resolve the exception specification.
This is enabled for all C++ modes: it's a little faster in the case where the
exception specification isn't used, allows our C++11-in-C++98 extensions to
work, and is still correct for C++98, since in that mode the computation of the
exception specification can't fail.
The diagnostics here aren't great (in particular, we should include implicit
evaluation of exception specifications for defaulted special members in the
template instantiation backtraces), but they're not much worse than before.
Our approach to the problem of cycles between in-class initializers and the
exception specification for a defaulted default constructor is modified a
little by this change -- we now reject any odr-use of a defaulted default
constructor if that constructor uses an in-class initializer and the use is in
an in-class initialzer which is declared lexically earlier. This is a closer
approximation to the current draft solution in core issue 1351, but isn't an
exact match (but the current draft wording isn't reasonable, so that's to be
expected).
llvm-svn: 160847
as an array of its base class TemplateArgument. Switch the const
TemplateArgument* parameters of InstantiatingTemplate's constructors to
ArrayRef<TemplateArgument> to prevent this from happening again in the future.
llvm-svn: 160245
being a property of a canonical type to being a property of the fully-sugared
type. This should only make a difference in the case where an alias template
ignores one of its parameters, and that parameter is an unexpanded parameter
pack.
llvm-svn: 160244