Originally reverted in r213432 with flakey failures on an ASan self-host
build. After reduction it seems to be the same issue fixed in r213805
(ArgPromo + DebugInfo: Handle updating debug info over multiple
applications of argument promotion) and r213952 (by having
LiveDebugVariables strip dbg_value intrinsics in functions that are not
described by debug info). Though I cannot explain why this failure was
flakey...
llvm-svn: 214761
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
llvm-svn: 214576
Per feedback on r214111, we are going to use null to represent unspecified
parameter. If the type array is {null}, it means a function that returns void;
If the type array is {null, null}, it means a variadic function that returns
void. In summary if we have more than one element in the type array and the last
element is null, it is a variadic function.
rdar://17628609
llvm-svn: 214189
The enum types array by design contains pointers to MDNodes rather than DIRefs.
Unique them when handling the enum types in DwarfDebug.
rdar://17628609
llvm-svn: 214139
DITypeArray is an array of DITypeRef, at its creation, we will create
DITypeRef (i.e use the identifier if the type node has an identifier).
This is the last patch to unique the type array of a subroutine type.
rdar://17628609
llvm-svn: 214132
This is the second of a series of patches to handle type uniqueing of the
type array for a subroutine type.
For vector and array types, getElements returns the array of subranges, so it
is a better name than getTypeArray. Even for class, struct and enum types,
getElements returns the members, which can be subprograms.
setArrays can set up to two arrays, the second is the templates.
This commit should have no functionality change.
llvm-svn: 214112
This recommits r208930, r208933, and r208975 (by reverting r209338) and
reverts r209529 (the FIXME to readd this functionality once the tools
were fixed) now that DWP has been fixed to cope with a single section
for all fission type units.
Original commit message:
"Since type units in the dwo file are handled by a debug aware tool,
they don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization."
llvm-svn: 213956
Reverted by Eric Christopher (Thanks!) in r212203 after Bob Wilson
reported LTO issues. Duncan Exon Smith and Aditya Nandakumar helped
provide a reduced reproduction, though the failure wasn't too hard to
guess, and even easier with the example to confirm.
The assertion that the subprogram metadata associated with an
llvm::Function matches the scope data referenced by the DbgLocs on the
instructions in that function is not valid under LTO. In LTO, a C++
inline function might exist in multiple CUs and the subprogram metadata
nodes will refer to the same llvm::Function. In this case, depending on
the order of the CUs, the first intance of the subprogram metadata may
not be the one referenced by the instructions in that function and the
assertion will fail.
A test case (test/DebugInfo/cross-cu-linkonce-distinct.ll) is added, the
assertion removed and a comment added to explain this situation.
This was then reverted again in r213581 as it caused PR20367. The root
cause of this was the early exit in LiveDebugVariables meant that
spurious DBG_VALUE intrinsics that referenced dead variables were not
removed, causing an assertion/crash later on. The fix is to have
LiveDebugVariables strip all DBG_VALUE intrinsics in functions without
debug info as they're not needed anyway. Test case added to cover this
situation (that occurs when a debug-having function is inlined into a
nodebug function) in test/DebugInfo/X86/nodebug_with_debug_loc.ll
Original commit message:
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 213952
Recommits 212776 which was reverted in r212793. This has been committed
and recommitted a few times as I try to test it harder and find/fix more
issues. The most recent revert was due to an asan bot failure which I
can't seem to reproduce locally, though I believe I'm following all the
steps the buildbot does.
So I'm going to recommit this in the hopes of investigating the failure
on the buildbot itself... apologies in advance for the bot noise. If
anyone sees failures with this /please/ provide me with any
reproductions, etc.
llvm-svn: 213391
Found during windows unwinding work. This header is indirectly included through
a chain leading through Support/Win64EH.h. Explicitly include the header. NFC.
llvm-svn: 212955
This reverts commit r212776.
Nope, still seems to be failing on the sanitizer bots... but hey, not
the msan self-host anymore, it's failing in asan now. I'll start looking
there next.
llvm-svn: 212793
Committed in r212205 and reverted in r212226 due to msan self-hosting
failure, I believe I've got that fixed by r212761 to Clang.
Original commit message:
"Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
committed again in r212085 and reverted again in r212089 after fixing
some other cases, such as debug info subprogram lists not keeping track
of the function they represent (r212128) and then short-circuiting
things like LiveDebugVariables that build LexicalScopes for functions
that might not have full debug info.
And again, I believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined
instructions."
llvm-svn: 212776
Reverted by Eric Christopher (Thanks!) in r212203 after Bob Wilson
reported LTO issues. Duncan Exon Smith and Aditya Nandakumar helped
provide a reduced reproduction, though the failure wasn't too hard to
guess, and even easier with the example to confirm.
The assertion that the subprogram metadata associated with an
llvm::Function matches the scope data referenced by the DbgLocs on the
instructions in that function is not valid under LTO. In LTO, a C++
inline function might exist in multiple CUs and the subprogram metadata
nodes will refer to the same llvm::Function. In this case, depending on
the order of the CUs, the first intance of the subprogram metadata may
not be the one referenced by the instructions in that function and the
assertion will fail.
A test case (test/DebugInfo/cross-cu-linkonce-distinct.ll) is added, the
assertion removed and a comment added to explain this situation.
Original commit message:
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 212649
This reverts commit r212205.
Reverting this again, still seeing crashes when building compiler-rt...
Sorry for the continued noise, not sure why I'm failing to reproduce
this locally.
llvm-svn: 212226
Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
committed again in r212085 and reverted again in r212089 after fixing
some other cases, such as debug info subprogram lists not keeping track
of the function they represent (r212128) and then short-circuiting
things like LiveDebugVariables that build LexicalScopes for functions
that might not have full debug info.
And again, I believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
llvm-svn: 212205
If a function isn't actually in a CU's subprogram list in the debug info
metadata, ignore all the DebugLocs and don't try to build scopes, track
variables, etc.
While this is possibly a minor optimization, it's also a correctness fix
for an incoming patch that will add assertions to LexicalScopes and the
debug info verifier to ensure that all scope chains lead to debug info
for the current function.
Fix up a few test cases that had broken/incomplete debug info that could
violate this constraint.
Add a test case where this occurs by design (inlining a
debug-info-having function in an attribute nodebug function - we want
this to work because /if/ the nodebug function is then inlined into a
debug-info-having function, it should be fine (and will work fine - we
just stitch the scopes up as usual), but should the inlining not happen
we need to not assert fail either).
llvm-svn: 212203
This reverts commit r212085.
This breaks the sanitizer bot... & I thought I'd tried pretty hard not
to do that. Guess I need to try harder.
llvm-svn: 212089
Originally committed in r211723, reverted in r211724 due to failure
cases found and fixed (ArgumentPromotion: r211872, Inlining: r212065),
and I now believe the invariant actually holds for some reasonable
amount of code (but I'll keep an eye on the buildbots and see what
happens... ).
Original commit message:
PR20038: DebugInfo: Inlined call sites where the caller has debug info
but the call itself has no debug location.
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
llvm-svn: 212085
Reverting this again, didn't mean to commit it - while r211872 fixes one
of the issues here, there are still others to figure out and address.
This reverts commit r211871.
llvm-svn: 211873
This situation does bad things when inlined, so I've fixed Clang not to
produce inlinable call sites without locations when the caller has debug
info (in the one case where I could find that this occurred). This
updates the PR20038 test case to be what clang now produces, and readds
the assertion that had to be removed due to this bug.
I've also beefed up the debug info verifier to help diagnose these
issues in the future, and I hope to add checks to the inliner to just
assert-fail if it encounters this situation. If, in the future, we
decide we have to cope with this situation, the right thing to do is
probably to just remove all the DebugLocs from the inlined instructions.
llvm-svn: 211723
The address pool was being emitted before location lists. The latter
could add more entries to the pool which would be lost/never emitted.
llvm-svn: 211284
Currently, llvm always emits a DWARF CIE with a version of 1, even when emitting
DWARF 3 or 4, which both support CIE version 3. This patch makes it emit the
newer CIE version when we are emitting DWARF 3 or 4. This will not reduce
compatibility, as we already emit other DWARF3/4 features, and is worth doing as
the DWARF3 spec removed some ambiguities in the interpretation of call frame
information.
It also fixes a minor bug where the "return address" field of the CIE was
encoded as a ULEB128, which is only valid when the CIE version is 3. There are
no test changes for this, because (as far as I can tell) none of the platforms
that we test have a return address register with a DWARF register number >127.
llvm-svn: 211272
I haven't nailed this down entirely, but this is about as small of a
test case as I can seem to construct and adequately demonstrates the
crasher. I'll continue investigating the root cause/fix(es).
llvm-svn: 210993
Now that we handle finding abstract variables at the end of the module,
remove the upfront handling and just ensure the abstract variable is
built when necessary.
In theory we could have a split implementation, where inlined variables
are immediately constructed referencing the abstract definition, and
concrete variables are delayed - but let's go with one solution for now
unless there's a reason not to.
llvm-svn: 210961
Rather than relying on abstract variables looked up at the time the
concrete variable is created, look them up at the end of the module to
ensure they're referenced even if they're created after the concrete
definition. This completes/matches the work done in r209677 to handle
this for the subprograms themselves.
llvm-svn: 210946
This doesn't fix the abstract variable handling yet, but it introduces a
similar delay mechanism as was added for subprograms, causing
DW_AT_location to be reordered to the beginning of the attribute list
for local variables, and fixes all the test fallout for that.
A subsequent commit will remove the abstract variable handling in
DbgVariable and just do the abstract variable lookup at module end to
ensure that abstract variables introduced after their concrete
counterparts are appropriately referenced by the concrete variable.
llvm-svn: 210943
This ensures that member functions, for example, are entered into
pubnames with their fully qualified name, rather than inside the global
namespace.
llvm-svn: 210379
Unused arguments were not being added to the argument list, but instead
treated as arbitrary scope variables. This meant they weren't carefully
added in the original argument order.
In this particular example, though, it turns out the argument is only
/mostly/ unused (well, actually it's entirely used, but in a specific
way). It's a struct that, due to ABI reasons, is decomposed into chunks
(exactly one chunk, since it has one member) and then passed. Since only
one of those chunks is used (SROA, etc, kill the original reconstitution
code) we don't have a location to describe the whole variable.
In this particular case, since the struct consists of just the one int,
once we have partial location information, this should have a location
that describes the entire variable (since the piece is the entirety of
the object).
And at some point we'll need to describe the location of even /entirely/
unused arguments so that they can at least be printed on function entry.
llvm-svn: 210231
Abstract variables within abstract scopes that are entirely optimized
away in their first inlining are omitted because their scope is not
present so the variable is never created. Instead, we should ensure the
scope is created so the variable can be added, even if it's been
optimized away in its first inlining.
This fixes the incorrect debug info in missing-abstract-variable.ll
(added in r210143) and passes an asserts self-hosting build, so
hopefully there's not more of these issues left behind... *fingers
crossed*.
llvm-svn: 210221
This was previously committed in r209680 and reverted in r209683 after
it caused sanitizer builds to crash.
The issue seems to be that the DebugLoc associated with dbg.value IR
intrinsics isn't necessarily accurate. Instead, we duplicate the
DIVariables and add an InlinedAt field to them to record their
location.
We were using this InlinedAt field to compute the LexicalScope for the
variable, but not using it in the abstract DbgVariable construction and
mapping. This resulted in a formal parameter to the current concrete
function, correctly having no InlinedAt information, but incorrectly
having a DebugLoc that described an inlined location within the
function... thus an abstract DbgVariable was created for the variable,
but its DIE was never constructed (since the LexicalScope had no such
variable). This DbgVariable was silently ignored (by testing for a
non-null DIE on the abstract DbgVariable).
So, fix this by using the right scoping information when constructing
abstract DbgVariables.
In the long run, I suspect we want to undo the work that added this
second kind of location tracking and fix the places where the DebugLoc
propagation on the dbg.value intrinsic fails. This will shrink debug
info (by not duplicating DIVariables), make it more efficient (by not
having to construct new DIVariable metadata nodes to try to map back to
a single variable), and benefit all instructions.
But perhaps there are insurmountable issues with DebugLoc quality that
I'm unaware of... I just don't know how we can't /just keep the DebugLoc
from the dbg.declare to the dbg.values and never get this wrong/.
Some history context:
http://llvm.org/viewvc/llvm-project?view=revision&revision=135629http://llvm.org/viewvc/llvm-project?view=revision&revision=137253
llvm-svn: 209984
Use more straightforward way to represent the set of instruction
ranges where the location of a user variable is defined - vector of pairs
of instructions (defining start/end of each range),
instead of a flattened vector of instructions where some instructions
are supposed to start the range, and the rest are supposed to "clobber" it.
Simplify the code which generates actual .debug_loc entries.
No functionality change.
llvm-svn: 209698
Current implementation of calculateDbgValueHistory already creates the
keys in the expected order (user variables are listed in order of appearance),
and should do so later by contract.
No functionality change.
llvm-svn: 209690
After much puppetry, here's the major piece of the work to ensure that
even when a concrete definition preceeds all inline definitions, an
abstract definition is still created and referenced from both concrete
and inline definitions.
Variables are still broken in this case (see comment in
dbg-value-inlined-parameter.ll test case) and will be addressed in
follow up work.
llvm-svn: 209677
A further step to correctly emitting concrete out of line definitions
preceeding inlined instances of the same program.
To do this, emission of subprograms must be delayed until required since
we don't know which (abstract only (if there's no out of line
definition), concrete only (if there are no inlined instances), or both)
DIEs are required at the start of the module.
To reduce the test churn in the following commit that actually fixes the
bug, this commit introduces the lazy DIE construction and cleans up test
cases that are impacted by the changes in the resulting DIE ordering.
llvm-svn: 209675
This is a precursor to fixing inlined debug info where the concrete,
out-of-line definition may preceed any inlined usage. To cope with this,
the attributes that may appear on the concrete definition or the
abstract definition are delayed until the end of the module. Then, if an
abstract definition was created, it is referenced (and no other
attributes are added to the out-of-line definition), otherwise the
attributes are added directly to the out-of-line definition.
In a couple of cases this causes not just reordering of attributes, but
reordering of types. When the creation of the attribute is delayed, if
that creation would create a type (such as for a DW_AT_type attribute)
then other top level DIEs may've been constructed during the delay,
causing the referenced type to be created and added after those
intervening DIEs. In the extreme case, in cross-cu-inlining.ll, this
actually causes the DW_TAG_basic_type for "int" to move from one CU to
another.
llvm-svn: 209674
This seems like a simple cleanup/improved consistency, but also helps
lay the foundation to fix the bug mentioned in the test case: concrete
definitions preceeding any inlined usage aren't properly split into
concrete + abstract (because they're not known to need it until it's too
late).
Once we start deferring this choice until later, we won't have the
choice to put concrete definitions for inlined subroutines in a
different scope from concrete definitions for non-inlined subroutines
(since we won't know at time-of-construction which one it'll be). This
change brings those two cases into alignment ahead of that future
chaneg/fix.
llvm-svn: 209547
It's not really a "ScopeDIE", as such - it's the abstract function
definition's DIE. And we usually use "SP" for subprograms, rather than
"Sub".
llvm-svn: 209499
constructSubprogramDIE was already called for every subprogram in every
CU when the module was started - there's no need to call it again at
module finalization.
llvm-svn: 209372
This reverts commit r208930, r208933, and r208975.
It seems not all fission consumers are ready to handle this behavior.
Reverting until tools are brought up to spec.
llvm-svn: 209338
Committed in r209178 then reverted in r209251 due to LTO breakage,
here's a proper fix for the case of the missing subprogram DIE. The DIEs
were there, just in other compile units. Using the SPMap we can find the
right compile unit to search for and produce cross-unit references to
describe this kind of inlining.
One existing test case needed to be updated because it had a function
that wasn't in the CU's subprogram list, so it didn't appear in the
SPMap.
llvm-svn: 209335
This reverts commit r209178.
This seems to be asserting in an LTO build on some internal Apple
buildbots. No upstream reproduction (and I don't have an LLVM-aware gold
built right now to reproduce it personally) but it's a small patch & the
failure's semi-plausible so I'm going to revert first while I try to
reproduce this.
llvm-svn: 209251
This change preserves the original algorithm of generating history
for user variables, but makes it more clear.
High-level description of algorithm:
Scan all the machine basic blocks and machine instructions in the order
they are emitted to the object file. Do the following:
1) If we see a DBG_VALUE instruction, add it to the history of the
corresponding user variable. Keep track of all user variables, whose
locations are described by a register.
2) If we see a regular instruction, look at all the registers it clobbers,
and terminate the location range for all variables described by these registers.
3) At the end of the basic block, terminate location ranges for all
user variables described by some register.
Although this change shouldn't be user-visible (the contents of .debug_loc section
should be the same), it changes some internal assumptions about the set
of instructions used to track the variable locations. Watching the bots.
llvm-svn: 209225
This workaround (presumably for ancient GDB) doesn't appear to be
required (GDB 7.5 seems to tolerate function definition DIEs in
namespace scope just fine).
llvm-svn: 209189
Since we visit the whole list of subprograms for each CU at module
start, this is clearly true - don't test for the case, just assert it.
A few old test cases seemed to have incomplete subprogram lists, but any
attempt to reproduce them shows full subprogram lists that even include
entities that have been completely inlined and the out of line
definition removed.
llvm-svn: 209178
When I refactored this in r208636 I accidentally caused this to be added
multiple times to each abstract subprogram (not accounting for the
deduplicating effect of the InlinedSubprogramDIEs set).
This got better in r208798 when the abstract definitions got the
attribute added to them at construction time, but still had the
redundant copies introduced in r208636.
This commit removes those excess DW_AT_inlines and relies solely on the
insertion in r208798.
llvm-svn: 209166
The check in DwarfDebug::constructScopeDIE was meant to consider inlined
subroutines as any non-top-level scope that was a subprogram. Instead of
checking "not top level scope" it was checking if the /subprogram's/
scope was non-top-level.
Fix this and beef up a test case to demonstrate some of the missing
inlined_subroutines are no longer missing.
In the course of fixing this I also found that r208748 (with this fix)
found one /extra/ inlined_subroutine in concrete_out_of_line.ll due to
two inlined_subroutines having the same inlinedAt location. The previous
implementation was collapsing these into a single inlined subroutine.
I'm not sure what the original code was that created this .ll file so
I'm not sure if this actually happens in practice today. Since we
deliberately include column information to disambiguate two calls on the
same line, that may've addressed this bug in the frontend, but it's good
to know that workaround isn't necessary for this particular case
anymore.
llvm-svn: 209165
I'm not sure this is how it'll be going forward (I'd rather prefer the
definition to be in the main SP mapping, for various reasons) but this
helps me understand how it is today.
llvm-svn: 209009
DIBuilder maintains this invariant and the current DwarfDebug code could
end up doing weird things if it contained declarations (such as putting
the definition DIE inside a CU that contained the declaration - this
doesn't seem like a good idea, so rather than adding logic to handle
this case we'll just ban in for now & cross that bridge if we come to
it later).
llvm-svn: 209004
Since type units in the dwo file are handled by a debug aware tool, they
don't need to leverage the ELF comdat grouping to implement
deduplication. Avoid creating all the .group sections for these as a
space optimization.
llvm-svn: 208930
Abstract variables should never have/use locations. In this case the
data wasn't used, so no functional change intended here, just
simplification.
llvm-svn: 208820
Many old tests using prior schemas still had some brokenness here (both
indirect arrays and arrays with single bogus elements). Fixed those up
so they don't hit the new assertions.
Also reduced nesting in some places, etc.
llvm-svn: 208817
This is just unneccessary - we only create abstract definitions when
we're inlining anyway, so there's no reason to delay this to see if
we're going to inline anything.
llvm-svn: 208798
This was reverted in r208642 due to regressions surrounding file changes
within lexical scopes causing inlining information to be lost.
The issue was in LexicalScopes::getOrCreateInlinedScope, where I was
previously testing "isLexicalBlock" which is false for
"DILexicalBlockFile" (a scope used to represent changes in the current
file name) and assuming it was then a function (breaking out of the
inlined scope path and reaching for the parent non-inlined scopes). By
inverting the condition and testing for "isSubprogram" the correct
behavior is attained.
(also found some weirdness in Clang, see r208742 when reducing this test
case - the resulting test case doesn't apply with the Clang fix, but
I've added a more realistic test case to inline-scopes.ll which does
reproduce the issue and demonstrate the fix)
llvm-svn: 208748
One test case had to be updated as it still had the extra indirection
for the variable list - removing the extra indirection got it back to
passing.
llvm-svn: 208608
Summary:
Get rid of UserVariables set, and turn DbgValues into MapVector
to get a fixed ordering, as suggested in review for http://reviews.llvm.org/D3573.
Test Plan: llvm regression tests
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3579
llvm-svn: 207720
Breaks GDB buildbot
(http://lab.llvm.org:8011/builders/clang-x86_64-ubuntu-gdb-75/builds/14517)
GCC emits DW_AT_object_pointer /everywhere/ (declaration, abstract
definition, inlined subroutine), but it looks like GCC relies on it
being somewhere other than the declaration, at least. I'll experiment
further & can hopefully still remove it from the inlined_subroutine.
This reverts commit r207705.
llvm-svn: 207719
They just don't need to be there - they're inherited from the abstract
definition. In theory I would like them to be inherited from the
declaration, but the DWARF standard doesn't quite say that... we can
probably do it anyway but I'm less confident about that so I'll leave it
for a separate commit.
llvm-svn: 207717
This effectively reverts r164326, but adds some comments and
justification and ensures we /don't/ emit the DW_AT_object_pointer on
the (abstract and concrete) definitions. (while still preserving it on
standalone definitions involving ObjC Blocks)
This does increase the size of member function declarations from 7 to 11
bytes, unfortunately, but still seems like the Right Thing to do so that
callers that see only the declaration still have the information about
the object pointer. That said, I don't know what, if any, DWARF
consumers don't have a heuristic to guess this in the case of normal
C++ member functions - perhaps we can remove it entirely.
llvm-svn: 207705
DwarfDebug.h has a SmallVector member containing a unique_ptr of an
incomplete type. MSVC doesn't have key functions, so the vtable and
dtor are emitted in AsmPrinter.cpp, where DwarfDebug's ctor is called.
AsmPrinter.cpp include DwarfUnit.h and doesn't get a complete definition
of DwarfTypeUnit. We could fix the problem by including DwarfUnit.h in
DwarfDebug.h, but that would increase header bloat. Instead, define
~DwarfDebug out of line.
llvm-svn: 207701
These were called from distinct places and had significant distinct
behavior. No need to make that a dynamic check inside the function
rather than just having two functions (refactoring some common code into
a helper function to be called from the two separate functions).
llvm-svn: 207539
Seems at some point the intent was to emit fission ranges_base as unique
per CU but the code today emits ranges_base as the start of the ranges
section for all CUs being compiled and all the ranges_base relative
addresses are relative to that. So removing this dead code and leaving
the status quo until there's a reason to change it (perhaps something's
faster if it has distinct ranges for each CU).
llvm-svn: 207464
(Clang doesn't warn here because it knows the string is benign - the
assert still checks what it's intended to - though putting the correct
parens does make clang-format format the code a little better)
llvm-svn: 207456
Since all 4 ctor calls in DwarfDebug just pass in a trivially
constructed DIE with the right tag type, sink the tag selection down
into the Dwarf*Unit ctors (removing the argument entirely from callers
in DwarfDebug) and initialize the DIE member in DwarfUnit.
llvm-svn: 207448
Now that the subtle constructScopeDIE has been refactored into two
functions - one returning memory to take ownership of, one returning a
pointer to already owning memory - push unique_ptr through more APIs.
I think this completes most of the unique_ptr ownership of DIEs.
llvm-svn: 207442
While refactoring out constructScopeDIE into two functions I realized we
were emitting DW_AT_object_pointer in the inlined subroutine when we
didn't need to (GCC doesn't, and the abstract subprogram definition has
the information already).
So here's the refactoring and the bug fix. This is one step of
refactoring to remove some subtle memory ownership semantics. It turns
out the original constructScopeDIE returned ownership in its return
value in some cases and not in others. The split into two functions now
separates those two semantics - further cleanup (unique_ptr, etc) will
follow.
llvm-svn: 207441
entry. This is in preparation for generic DW_OP_piece support.
No functional change so far.
http://reviews.llvm.org/D3373
rdar://problem/15928306
llvm-svn: 207368
Since there's no way to ensure the type unit in the .dwo and the type
unit skeleton in the .o are correlated, this cannot work.
This implementation is a bit inefficient for a few reasons, called out
in comments.
llvm-svn: 207323
Sinking addition of the declaration attribute down to where the
signature is added. So that if the signature is not added neither is the
declaration attribute (this will come in handy when aborting type unit
construction to instead emit the type into the CU directly in some
cases)
Pull out type unit identifier hashing just to simplify the function a
little, it'll be getting longer.
llvm-svn: 207321
This also avoids the need for subtly side-effecting calls to manifest
strings in the string table at the point where items are added to the
accelerator tables.
llvm-svn: 207281
Pulls out some more code from some of the rather monolithic DWARF
classes. Unlike the address table, the string table won't move up into
DwarfDebug - each DWARF file has its own string table (but there can be
only one address table).
llvm-svn: 207277
This should reduce the chance of memory leaks like those fixed in
r207240.
There's still some unclear ownership of DIEs happening in DwarfDebug.
Pushing unique_ptr and references through more APIs should help expose
the cases where ownership is a bit fuzzy.
llvm-svn: 207263
Since this doesn't return ownership (the DIE has been added to the
specified parent already) nor return null, just return by reference.
llvm-svn: 207259
This'll make changing to unique_ptr ownership of DIEs easier since the
usages will now have '*' on them making them textually compatible
between unique_ptr and raw pointer.
llvm-svn: 207253
There's only ever one address pool, not one per DWARF output file, so
let's just have one.
(similar refactoring of the string pool to come soon)
llvm-svn: 207026
Some of these types (DwarfDebug in particular) are quite large to begin
with (and I keep forgetting whether DwarfFile is in DwarfDebug or
DwarfUnit... ) so having a few smaller files seems like goodness.
llvm-svn: 207010
This prompted me to push references through most of DwarfDebug. Sorry
for the churn.
Honestly it's a bit silly that we're passing around units all over the
place like that anyway and I think it's mostly due to the DIE attribute
adding utility functions being utilities in DwarfUnit. I should have
another go at moving them out of DwarfUnit...
llvm-svn: 206925
This reverts commit r206780.
This commit was regressing gdb.opt/inline-locals.exp in the GDB 7.5 test
suite. Reverting until I can fix the issue.
llvm-svn: 206867
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
Requires switching some vectors to lists to maintain pointer validity.
These could be changed to forward_lists (singly linked) with a bit more
work - I've left comments to that effect.
llvm-svn: 206780
Summary:
This prevents the discriminator generation pass from triggering if
the DWARF version being used in the module is prior to 4.
Reviewers: echristo, dblaikie
CC: llvm-commits
Differential Revision: http://reviews.llvm.org/D3413
llvm-svn: 206507
Got bored, removed some manual memory management.
Pushed references (rather than pointers) through a few APIs rather than
replacing *x with x.get().
llvm-svn: 206222
Nice to be able to just print out the Tag and have the debugger print
dwarf::DW_TAG_subprogram or whatever, rather than an int.
It's a bit finicky (for example DIDescriptor::getTag still returns
unsigned) because some places still handle real dwarf tags + our fake
tags (one day we'll remove the fake tags, hopefully).
llvm-svn: 206098
I'm not sure the comment in the implementation really adds a lot of
value (it's clear that we emit zero when no symbol is provided, but it
doesn't explain why we would do that). Happy to iterate.
llvm-svn: 205386
This removes the magic-number-esque code creating/retrieving the same
label for a debug_loc entry from two places and removes the last small
piece of reusable logic from emitDebugLoc so that there will be less
duplication when refactoring it into two functions (one for debug_loc,
the other for debug_loc.dwo).
llvm-svn: 205382
No other functionality changes, DIBuilder testcase is included in a paired
CFE commit.
This relaxes the assertion in isScopeRef to also accept subclasses of
DIScope.
llvm-svn: 205279
Implement debug_loc.dwo, as well as llvm-dwarfdump support for dumping
this section.
Outlined in the DWARF5 spec and http://gcc.gnu.org/wiki/DebugFission the
debug_loc.dwo section has more variation than the standard debug_loc,
allowing 3 different forms of entry (plus the end of list entry). GCC
seems to, and Clang certainly, only use one form, so I've just
implemented dumping support for that for now.
It wasn't immediately obvious that there was a good refactoring to share
the implementation of dumping support between debug_loc and
debug_loc.dwo, so they're separate for now - ideas welcome or I may come
back to it at some point.
As per a comment in the code, we could choose different forms that may
reduce the number of debug_addr entries we emit, but that will require
further study.
llvm-svn: 204697
This seems excessive - switching section isn't expensive (or if it is
we're already being wasteful, since we emitted the debug_loc section
symbol earlier anyway) and otherwise there's no work that happens in
this function when the list is empty.
llvm-svn: 204696
No functional change intended.
Merging up-front rather than delaying this task until later. This just
seems simpler and more efficient (avoiding growing the debug loc list
only to have to skip over those post-merged entries, etc).
llvm-svn: 204679
This is used to avoid relocations in the dwo file by allowing
DW_AT_ranges specified in debug_info.dwo to be relative to this base
address. (r204667 implements the base-relative DW_AT_ranges side of
this)
llvm-svn: 204672
This removes the debug_ranges relocations from debug_info.dwo (but
doesn't implement the DW_AT_GNU_ranges_base which is also necessary for
correct functioning)
llvm-svn: 204668
Type units have no addresses, so there's no need for DW_AT_addr_base.
This removes another relocation from every skeletal type unit and brings
LLVM's skeletal type units in line with GCC's (containing only
GNU_dwo_name (strp), comp_dir (strp), and GNU_pubnames (flag_present)).
Cary's got some ideas about using str_index in the .o file to reduce
those last two relocations (well, replace two relocations with one
relocation (pointing to the string index) and two indicies)
llvm-svn: 204506
Use the range machinery for DW_AT_ranges and DW_AT_high/lo_pc.
This commit moves us from a single range per subprogram to extending
ranges if we are:
a) In the same section, and
b) In the same enclosing CU.
This means we have more fine grained ranges for compile units, and fewer
ranges overall when we have multiple functions in the same CU
adjacent to each other in the object file.
Also remove all of the earlier hacks around this functionality for
function sections etc. Also update all of the testcases to take into
account the merging functionality.
with a fix for location entries in the debug_loc section:
Make sure that debug loc entries are relative to the low_pc
of the compile unit. This means that when we only have a single
range that the offset should be just relative to the low_pc
of the unit, for multiple ranges for a CU this means that we'll be
relative to 0 which we emit along with DW_AT_ranges.
This mostly shows up with linked binaries, so add a testcase with
multiple CUs so that our location is going to be offset of a CU
with a non-zero low_pc.
llvm-svn: 204377
This commit moves us from a single range per subprogram to extending
ranges if we are:
a) In the same section, and
b) In the same enclosing CU.
This means we have more fine grained ranges for compile units, and fewer
ranges overall when we have multiple functions in the same CU
adjacent to each other in the object file.
Also remove all of the earlier hacks around this functionality for
function sections etc. Also update all of the testcases to take into
account the merging functionality.
llvm-svn: 204277
This isn't a complete fix - it falls back to non-comp_dir when multiple
compile units are in play. Adding a map of comp_dir to table is part of
the more general solution, but I gave up (in the short term) when I
realized I'd also have to calculate the size of each type unit so as to
produce correct DW_AT_stmt_list attributes.
llvm-svn: 204202
This allows us to catch more opportunities for ODR-based type uniquing
during LTO.
Paired commit with CFE which updates some testcases to verify the new
DIBuilder behavior.
llvm-svn: 204106
This removes an attribute (and more importantly, a relocation) from
skeleton type units and removes some unnecessary file names from the
debug_line section that remains in the .o (and linked executable) file.
There's still a few places we could shave off some more space here:
* use compilation dir of the underlying compilation unit (since all the
type units share that compilation dir - though this would be more
complicated in LTO cases where they don't (keep a map of compilation
dir->line table header?))
* Remove some of the unnecessary header fields from the line table since
they're not needed in this situation (about 12 bytes per table).
llvm-svn: 204099
When emitting assembly there's no support for emitting separate line
tables for each compilation unit - so LLVM emits .loc directives
producing a single line table.
Line tables have an implicit directory (index 0) equal to the
compilation directory (DW_AT_comp_dir) of the compilation unit that
references them.
If multiple compilation units (with possibly disparate compilation
directories) reference the same line table, we must avoid relying on
this ambiguous directory.
Achieve this my simply not setting the compilation directory on the line
table when we're in this situation (multiple units while emitting
assembly).
llvm-svn: 204094
We still do a few lookups into the line table mapping in MCContext that
could be factored out into a single lookup (rather than looking it up
once for the table label, once to set the compilation unit, once for
each time we need a file ID, etc... ) but assembly output complicates
that somewhat as we still need a virtual dispatch back to the
MCAsmStreamer in that case.
llvm-svn: 204092
Our handling of compilation directory in DwarfDebug was broken
(incorrectly using the 'last' compilation directory (that of the last
CU in the metadata list) for all function emission in any CU). By moving
this handling down into MCDwarf the issue is fixed as the compilation
dir is tracked correctly per line table.
llvm-svn: 204089
See r204027 for the precursor to this that applied to asm debug info.
This required some non-obvious API changes to handle the case of asm
output (we never go asm->asm so this didn't come up in r204027): the
modification of the file/directory name by MCDwarfLineTableHeader needed
to be reflected in the MCAsmStreamer caller so it could print the
appropriate .file directive, so those StringRef parameters are now
non-const ref (in/out) parameters rather than just const.
llvm-svn: 204069
based on the ODR.
This adds an OdrMemberMap to DwarfDebug which is used to unique C++
member function declarations based on the unique identifier of their
containing class and their mangled name.
We can't use the usual DIRef mechanism here because DIScopes are indexed
using their entire MDNode, including decl_file and decl_line, which need
not be unique (see testcase).
Prior to this change multiple redundant member function declarations would
end up in the same uniqued DW_TAG_class_type.
llvm-svn: 203982
any lexical scopes then go ahead and turn on DW_AT_ranges for the
compile unit since we would be claiming to describe in the CU
a range for which we don't have information in the CU otherwise.
llvm-svn: 203969
I could fold the callers into their one call site, but the indirection
(given how verbose choosing the section is) seemed helpful.
The use of a member function pointer's a bit "tricky", but seems limited
enough, the call sites are simple/clean/clear, and there's only one use.
llvm-svn: 203619
First: refactor out the emission of entries into the .debug_loc section
into its own routine.
Second: add a new class ByteStreamer that can be used to either emit
using an AsmPrinter or hash using DIEHash the series of bytes that
would be emitted. Use this in all of the location emission routines
for the .debug_loc section.
No functional change intended outside of a few additional comments
in verbose assembly.
llvm-svn: 203304
The old system was fairly convoluted:
* A temporary label was created.
* A single PROLOG_LABEL was created with it.
* A few MCCFIInstructions were created with the same label.
The semantics were that the cfi instructions were mapped to the PROLOG_LABEL
via the temporary label. The output position was that of the PROLOG_LABEL.
The temporary label itself was used only for doing the mapping.
The new CFI_INSTRUCTION has a 1:1 mapping to MCCFIInstructions and points to
one by holding an index into the CFI instructions of this function.
I did consider removing MMI.getFrameInstructions completelly and having
CFI_INSTRUCTION own a MCCFIInstruction, but MCCFIInstructions have non
trivial constructors and destructors and are somewhat big, so the this setup
is probably better.
The net result is that we don't create temporary labels that are never used.
llvm-svn: 203204