Headers/Implementation files should be named after the class they
declare/define.
Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`
llvm-svn: 320546
Tabort (transaction abort) does not load from memory.
mayLoad flag removed from corresponding TABORT machine instruction.
Review: Ulrich Weigand
llvm-svn: 319905
Csmith discovered a program that caused wrong code generation with -O0:
When handling a SIGN_EXTEND in expandRxSBG(), RxSBG.BitSize may be less than
the Input width (if a truncate was previously traversed), so maskMatters()
should be called with a masked based on the width of the sign extend result
instead.
Review: Ulrich Weigand
llvm-svn: 319892
When folding a shift into a test-under-mask comparison, make sure that
there is no loss of precision when creating the shifted comparison
value. This usually never happens, except for certain always-true
comparisons in unoptimized code.
Fixes PR35529.
llvm-svn: 319818
This has proven a healthy exercise, as many cases of incorrect instruction
flags were corrected in the process. As part of this, IntrWriteMem was added
to several SystemZ instrinsics.
Furthermore, a bug was exposed in TwoAddress with this change (as incorrect
hasSideEffects flags were removed and instructions could now be sunk), and
the test case for that bugfix (r319646) is included here as
test/CodeGen/SystemZ/twoaddr-sink.ll.
One temporary test regression (one extra copy) which will hopefully go away
in upcoming patches for similar cases:
test/CodeGen/SystemZ/vec-trunc-to-i1.ll
Review: Ulrich Weigand.
https://reviews.llvm.org/D40437
llvm-svn: 319756
MachineRegisterInfo used to allow just one regalloc hint per virtual
register. This patch extends this to a vector of regalloc hints, which is
filled in by common code with sorted copy hints. Such hints will make for
more ID copies that can be removed.
NB! This improvement is currently (and hopefully temporarily) *disabled* by
default, except for SystemZ. The only reason for this is the big impact this
has on tests, which has unfortunately proven unmanageable. It was a long
while since all the tests were updated and just waiting for review (which
didn't happen), but now targets have to enable this themselves
instead. Several targets could get a head-start by downloading the tests
updates from the Phabricator review. Thanks to those who helped, and sorry
you now have to do this step yourselves.
This should be an improvement generally for any target!
The target may still create its own hint, in which case this has highest
priority and is stored first in the vector. If it has target-type, it will
not be recomputed, as per the previous behaviour.
The temporary hook enableMultipleCopyHints() will be removed as soon as all
targets return true.
Review: Quentin Colombet, Ulrich Weigand.
https://reviews.llvm.org/D38128
llvm-svn: 319754
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Csmith generated a program where a store after load to the same address did
not get chained after the new load created during DAG legalizing, and so
performed an illegal overwrite of the expected value.
When the new zero-extending load is created, the chain users of the original
load must be updated, which was not done previously.
A similar case was also found and handled in lowerBITCAST.
Review: Ulrich Weigand
https://reviews.llvm.org/D40542
llvm-svn: 319409
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Summary:
Make it possible to feed runtime information back to tablegen to enable
profile-guided tablegen-eration, detection of untested tablegen definitions, etc.
Being a cross-compiler by nature, LLVM will potentially collect data for multiple
architectures (e.g. when running 'ninja check'). We therefore need a way for
TableGen to figure out what data applies to the backend it is generating at the
time. This patch achieves that by including the name of the 'def X : Target ...'
for the backend in the TargetRegistry.
Reviewers: qcolombet
Reviewed By: qcolombet
Subscribers: jholewinski, arsenm, jyknight, aditya_nandakumar, sdardis, nemanjai, ab, nhaehnle, t.p.northover, javed.absar, qcolombet, llvm-commits, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D39742
llvm-svn: 318352
In rare cases, common code will attempt to select an OR of two
constants. This confuses the logic in splitLargeImmediate,
causing an internal error during isel. Fixed by simply leaving
this case to common code to handle.
This fixes PR34859.
llvm-svn: 318187
Before using the 32-bit RISBMux set of instructions we need to
verify that the input bits are actually within range of the 32-bit
instruction. This fixer PR35289.
llvm-svn: 318177
* The method getRegAllocationHints() is now of bool type instead of void. If
true is returned, regalloc (AllocationOrder) will *only* try to allocate the
hints, as opposed to merely trying them before non-hinted registers.
* TargetRegisterInfo::getRegAllocationHints() is implemented for SystemZ with
an increase in number of LOCRs.
In this case, it is desired to force the hints even though there is a slight
increase in spilling, because if a non-hinted register would be allocated,
the LOCRMux pseudo would have to be expanded with a jump sequence. The LOCR
(Load On Condition) SystemZ instruction must have both operands in either the
low or high part of the 64 bit register.
Reviewers: Quentin Colombet and Ulrich Weigand
https://reviews.llvm.org/D36795
llvm-svn: 317879
We don't really need any special handling of "offsettable"
memory addresses, but since some existing code uses inline
asm statements with the "o" constraint, add support for this
constraint for compatibility purposes.
llvm-svn: 317807
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
SystemZ can do division and remainder in a single instruction for scalar
integer types, which are now reflected by returning true in this hook for
those cases.
Review: Ulrich Weigand
llvm-svn: 317477
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
This adds debug tracing to the table-generated assembly instruction matcher,
enabled by the -debug-only=asm-matcher option.
The changes in the target AsmParsers are to add an MCInstrInfo reference under
a consistent name, so that we can use it from table-generated code. This was
already being used this way for targets that use deprecation warnings, but 5
targets did not have it, and Hexagon had it under a different name to the other
backends.
llvm-svn: 315445
functions.
This makes the ownership of the resulting MCObjectWriter clear, and allows us
to remove one instance of MCObjectStreamer's bizarre "holding ownership via
someone else's reference" trick.
llvm-svn: 315327
ELFObjectWriter's constructor.
Fixes the same ownership issue for ELF that r315245 did for MachO:
ELFObjectWriter takes ownership of its MCELFObjectTargetWriter, so we want to
pass this through to the constructor via a unique_ptr, rather than a raw ptr.
llvm-svn: 315254
The machine scheduler (before register allocation) is enabled by default for
SystemZ.
The SelectionDAG scheduling preference now becomes source order scheduling
(was regpressure).
Review: Ulrich Weigand
https://reviews.llvm.org/D37977
llvm-svn: 315063
Implement shouldCoalesce() to help regalloc avoid running out of GR128
registers.
If a COPY involving a subreg of a GR128 is coalesced, the live range of the
GR128 virtual register will be extended. If this happens where there are
enough phys-reg clobbers present, regalloc will run out of registers (if
there is not a single GR128 allocatable register available).
This patch tries to allow coalescing only when it can prove that this will be
safe by checking the (local) interval in question.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D37899https://bugs.llvm.org/show_bug.cgi?id=34610
llvm-svn: 314516
The expensive-checks build bot found a problem with the r314428 commit:
if CC is live after a ATOMIC_CMP_SWAPW instruction, it needs to be
marked as live-in to the block after the loop the pseudo gets expanded
to. This actually fixes a code-gen bug as well, since if the CC isn't
live, the CR and JLH are merged to a CRJLH which doesn't actually set
the condition code any more.
llvm-svn: 314465
The SystemZ compare-and-swap instructions already provide the "success"
indication via a condition-code value, so the default expansion of those
operations generates an unnecessary extra comparsion.
llvm-svn: 314428
More conversions to load-and-test can be made with this patch by adding a
forward search in optimizeCompareZero().
Review: Ulrich Weigand
https://reviews.llvm.org/D38076
llvm-svn: 313877
SystemZTargetLowering::combineSTORE contains code to transform a
combination of STORE + BSWAP into a STRV type instruction.
This transformation is correct for regular stores, but not for
truncating stores. The routine neglected to check for that case.
Fixes a miscompilation of llvm-objcopy with clang, which caused
test suite failures in the SystemZ multistage build bot.
llvm-svn: 313669
This bit is needed in order for the CalleeSavedRegs list to automatically
include the super registers if all of their subregs are present.
Thanks to Wei Mi for initially indicating this deficiency in the SystemZ
backend.
Review: Ulrich Weigand.
https://bugs.llvm.org/show_bug.cgi?id=34550
llvm-svn: 313023
The idea of this patch is to continue the scheduler state over an MBB boundary
in the case where the successor block has only one predecessor. This means
that the scheduler will continue in the successor block (after emitting any
branch instructions) with e.g. maintained processor resource counters.
Benchmarks have been confirmed to benefit from this.
The algorithm in MachineScheduler.cpp that extracts scheduling regions of an
MBB has been extended so that the strategy may optionally reverse the order
of processing the regions themselves. This is controlled by a new method
doMBBSchedRegionsTopDown(), which defaults to false.
Handling the top-most region of an MBB first also means that a top-down
scheduler can continue the scheduler state across any scheduling boundary
between to regions inside MBB.
Review: Ulrich Weigand, Matthias Braun, Andy Trick.
https://reviews.llvm.org/D35053
llvm-svn: 311072
The liveness-tracking code assumes that the registers that were saved
in the function's prolog are live outside of the function. Specifically,
that registers that were saved are also live-on-exit from the function.
This isn't always the case as illustrated by the LR register on ARM.
Differential Revision: https://reviews.llvm.org/D36160
llvm-svn: 310619
isLegalAddressingMode() has recently gained the extra optional Instruction*
parameter, and therefore it can now do the job that previously only
isFoldableMemAccess() could do.
The SystemZ implementation of isLegalAddressingMode() has gained the
functionality of checking for offsets, which used to be done with
isFoldableMemAccess().
The isFoldableMemAccess() hook has been removed everywhere.
Review: Quentin Colombet, Ulrich Weigand
https://reviews.llvm.org/D35933
llvm-svn: 310463
This adds support for the main 128-bit atomic operations,
using the SystemZ instructions LPQ, STPQ, and CDSG.
Generating these instructions is a bit more complex than usual
since the i128 type is not legal for the back-end. Therefore,
we have to hook the LowerOperationWrapper and ReplaceNodeResults
TargetLowering callbacks.
llvm-svn: 310094
We currently emit a serialization operation (bcr 14, 0) before every
atomic load and after every atomic store. This is overly conservative.
The SystemZ architecture actually does not require any serialization
for atomic loads, and a serialization after an atomic store only if
we need to enforce sequential consistency. This is what other compilers
for the platform implement as well.
llvm-svn: 310093
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.
In order to achieve this, the following common code changes were made:
* New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
LSR should do instruction-based addressing evaluations by calling
isLegalAddressingMode() with the Instruction pointers.
* In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
not just loads or stores.
SystemZ changes:
* isLSRCostLess() implemented with Insns first, and without ImmCost.
* New function supportedAddressingMode() that is a helper for TTI methods
looking at Instructions passed via pointers.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262https://reviews.llvm.org/D35049
llvm-svn: 308729
This adds support for the new 128-bit vector float instructions of z14.
Note that these instructions actually only operate on the f128 type,
since only each 128-bit vector register can hold only one 128-bit
float value. However, this is still preferable to the legacy 128-bit
float instructions, since those operate on pairs of floating-point
registers (so we can hold at most 8 values in registers), while the
new instructions use single vector registers (so we hold up to 32
value in registers).
Adding support includes:
- Enabling the instructions for the assembler/disassembler.
- CodeGen for the instructions. This includes allocating the f128
type now to the VR128BitRegClass instead of FP128BitRegClass.
- Scheduler description support for the instructions.
Note that for a small number of operations, we have no new vector
instructions (like integer <-> 128-bit float conversions), and so
we use the legacy instruction and then reformat the operand
(i.e. copy between a pair of floating-point registers and a
vector register).
llvm-svn: 308196
This adds support for the new 32-bit vector float instructions of z14.
This includes:
- Enabling the instructions for the assembler/disassembler.
- CodeGen for the instructions, including new LLVM intrinsics.
- Scheduler description support for the instructions.
- Update to the vector cost function calculations.
In general, CodeGen support for the new v4f32 instructions closely
matches support for the existing v2f64 instructions.
llvm-svn: 308195
This patch series adds support for the IBM z14 processor. This part includes:
- Basic support for the new processor and its features.
- Support for new instructions (except vector 32-bit float and 128-bit float).
- CodeGen for new instructions, including new LLVM intrinsics.
- Scheduler description for the new processor.
- Detection of z14 as host processor.
Support for the new 32-bit vector float and 128-bit vector float
instructions is provided by separate patches.
llvm-svn: 308194