Summary:
Android target triples can include a version number in the abi field
(e.g. 'aarch64-linux-android21'), used for checking for availability.
However, the driver was searching for toolchain binaries using the
passed in triple as a prefix.
Reviewers: srhines, danalbert, t.p.northover
Subscribers: t.p.northover, aemerson, tberghammer, danalbert, srhines, cfe-commits
Differential Revision: http://reviews.llvm.org/D21163
llvm-svn: 272413
Add a new test android-ndk-standalone.cpp
with new Android NDK release tree structure.
Detect armv7 sub architecture and thumb mode,
to add system include and link search paths.
Differential Revision: http://reviews.llvm.org/D20600
llvm-svn: 271427
Most things even work; see the included FIXMEs for things that need polishing.
Also don't warn about unused flags for the `/Yuh2.h /FIh1.h /FIh2.h`. The
common case is that the pch was built with `/Ych2.h /FIh1.h /FIh2.h`, so h1.h
is in the PCH, and we shouldn't warn about /FIh1.h not having an effect.
(If we wanted to get fancy, we could store the list of -include flags in the
pch and then check that it matches later on.)
llvm-svn: 264178
We almost get this right, but not completely (see FIXME). It looks like /FI
headers generally aren't included in /showIncludes yet, but they should be.
But it seems good to have test coverage for the bits that already work.
llvm-svn: 263344
In the gcc precompiled header model, one explicitly runs clang with `-x
c++-header` on a .h file to produce a gch file, and then includes the header
with `-include foo.h` and if a .gch file exists for that header it gets used.
This is documented at
http://clang.llvm.org/docs/UsersManual.html#precompiled-headers
cl.exe's model is fairly different, and controlled by the two flags /Yc and
/Yu. A pch file is generated as a side effect of a regular compilation when
/Ycheader.h is passed. While the compilation is running, the compiler keeps
track of #include lines in the main translation unit and writes everything up
to an `#include "header.h"` line into a pch file. Conversely, /Yuheader.h tells
the compiler to skip all code in the main TU up to and including `#include
"header.h"` and instead load header.pch. (It's also possible to use /Yc and /Yu
without an argument, in that case a `#pragma hrdstop` takes the role of
controlling the point where pch ends and real code begins.)
This patch implements limited support for this in that it requires the pch
header to be passed as a /FI force include flag – with this restriction,
it can be implemented almost completely in the driver with fairly small amounts
of code. For /Yu, this is trivial, and for /Yc a separate pch action is added
that runs before the actual compilation. After r261774, the first failing
command makes a compilation stop – this means if the pch fails to build the
main compilation won't run, which is what we want. However, in /fallback builds
we need to run the main compilation even if the pch build fails so that the
main compilation's fallback can run. To achieve this, add a ForceSuccessCommand
that pretends that the pch build always succeeded in /fallback builds (the main
compilation will then fail to open the pch and run the fallback cl.exe
invocation).
If /Yc /Yu are used in a setup that clang-cl doesn't implement yet, clang-cl
will now emit a "not implemented yet; flag ignored" warning that can be
disabled using -Wno-clang-cl-pch.
Since clang-cl doesn't yet serialize some important things (most notably
`pragma comment(lib, ...)`, this feature is disabled by default and only
enabled by an internal driver flag. Once it's more stable, this internal flag
will disappear.
(The default stdafx.h setup passes stdafx.h as explicit argument to /Yc but not
as /FI – instead every single TU has to `#include <stdafx.h>` as first thing it
does. Implementing support for this should be possible with the approach in
this patch with minimal frontend changes by passing a --stop-at / --start-at
flag from the driver to the frontend. This is left for a follow-up. I don't
think we ever want to support `#pragma hdrstop`, and supporting it with this
approach isn't easy: This approach relies on the driver knowing the pch
filename in advance, and `#pragma hdrstop(out.pch)` can set the output
filename, so the driver can't know about it in advance.)
clang-cl now also honors /Fp and puts pch files in the same spot that cl.exe
would put them, but the pch file format is of course incompatible. This has
ramifications on /fallback, so /Yc /Yu aren't passed through to cl.exe in
/fallback builds.
http://reviews.llvm.org/D17695
llvm-svn: 262420
This patch introduces the -fwhole-program-vtables flag, which enables the
whole-program vtable optimization feature (D16795) in Clang.
Differential Revision: http://reviews.llvm.org/D16821
llvm-svn: 261767
Summary:
Previously we compiled CUDA device code to PTX assembly and embedded
that asm as text in our host binary. Now we compile to PTX assembly and
then invoke ptxas to assemble the PTX into a cubin file. We gather the
ptx and cubin files for each of our --cuda-gpu-archs and combine them
using fatbinary, and then embed that into the host binary.
Adds two new command-line flags, -Xcuda_ptxas and -Xcuda_fatbinary,
which pass args down to the external tools.
Reviewers: tra, echristo
Subscribers: cfe-commits, jhen
Differential Revision: http://reviews.llvm.org/D16082
llvm-svn: 257809
- Removed support for hexagonv3 and earlier.
- Added handling of hexagonv55 and hexagonv60.
- Added handling of target features (hvx, hvx-double).
- Updated paths to reflect current directory layout.
llvm-svn: 255502
This improves the coverage for the multilib directories used for ARM. Also add
tests covering the internal triple (thumbv7-*). The Juno board can be run in
this configuration.
llvm-svn: 255328
- added detection of libdevice bitcode file and API to find one appropriate for the GPU we're compiling for.
- pass additional cc1 options for linking with detected libdevice bitcode
- added -nocudalib to prevent automatic linking with libdevice
- added test cases to verify new functionality
Differential Revision: http://reviews.llvm.org/D14556
llvm-svn: 253387
Last time, this caused two Windows buildbots and a single ARM buildbot to fail.
I XFAIL'd the failing test on win32,win64 machines in order to see if the ARM
buildbot complains again.
llvm-svn: 252901
The original commit in r249137 added the mips-mti-linux toolchain. However,
the newly added tests of that commit failed in few buildbots. This commit
re-applies the original changes but XFAILs the test file which caused
the buildbot failures. This will allow us to examine what's going wrong
without having to commit/revert large changes.
llvm-svn: 251633
There was a minor problem with a test. Sorry for the noise yesterday.
This patch adds missing pieces to clang, including the PS4 toolchain
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D13482
llvm-svn: 250293
Resubmitting the patch.
This patch adds missing pieces to clang, including the PS4 toolchain
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D13482
llvm-svn: 250262
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D13482
llvm-svn: 250252
r249137 added support for the new mips-mti-linux toolchain. However,
the new tests of that commit, broke some buildbots because they didn't use
the correct regular expressions to capture the filename of Clang & LLD.
This commit re-applies the changes of r249137 and fixes the tests in
r249137 in order to match the filenames of the Clang and LLD executable.
llvm-svn: 249294
Summary:
This new toolchain uses primarily LLVM-based tools, eg. compiler-rt, lld,
libcxx, etc. Because of this, it doesn't require neither an existing GCC
installation nor a GNU environment. Ideally, in a follow-up patch we
would like to add a new --{llvm|clang}-toolchain option (similar to
--gcc-toolchain) in order to allow the use of this toolchain with
independent Clang builds. For the time being, we use the --sysroot
option just to test the correctness of the paths generated by the
driver.
Reviewers: atanasyan, dsanders, rsmith
Subscribers: jfb, tberghammer, danalbert, srhines, dschuff, cfe-commits
Differential Revision: http://reviews.llvm.org/D13340
llvm-svn: 249137
definition, added warnings, PS4 defaults, and Driver changes needed for
our compiler.
A patch by Filipe Cabecinhas, Pierre Gousseau and Katya Romanova!
Differential Revision: http://reviews.llvm.org/D11279
llvm-svn: 248546
Added new option --cuda-path=<path> which allows
overriding default search paths.
If it's not specified we look for CUDA installation in
/usr/include/cuda and /usr/include/cuda-7.0.
Differential Revision: http://reviews.llvm.org/D12989
llvm-svn: 248433
Added new option --cuda-path=<path> which allows
overriding default search paths.
If it's not specified we look for CUDA installation in
/usr/include/cuda and /usr/include/cuda-7.0.
Differential Revision: http://reviews.llvm.org/D12989
llvm-svn: 248408
Summary:
Do not include default sanitizer blacklists into -M/-MM/-MD/-MMD output.
Introduce a frontend option -fdepfile-entry, and only insert them
for the user-defined sanitizer blacklists. In frontend, grab ExtraDeps
from -fdepfile-entry, instead of -fsanitize-blacklist.
Reviewers: rsmith, pcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12544
llvm-svn: 246700
This patch refactors the code to use the GCC installation detector
(modified so that it works in Solaris), and uses
ToolChain::GetFilePath everywhere once it works.
Patch by Xan López <xan@igalia.com>!
llvm-svn: 246473
Summary:
When we want to use mingw-w64 and clang with compiler-rt we should not
need to have libgcc installed. This fixes finding includes when libgcc
is not installed
Reviewers: yaron.keren
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D11808
llvm-svn: 244902
Address Richard Smith comments: remove the trailing seperator from the Arch
variable, implement six mingw_* trees under tools/clangtest/Driver/Inputs
and merge linux and Windows tests into a universal test that uses these trees.
llvm-svn: 243098
Adds tests verifying the proper dirs are found in the Debian 8/GCC4.9
layout for sparc (32bit), sparc (32bit) with lib64 multilib, and
sparc64.
The test cases added here also cover r239047, which fixed the linker
paths.
llvm-svn: 239154
For now tsan_cxx and msan_cxx contain only operator new/delete
replacements. In the future, when we add support for running UBSan+TSan
and UBSan+MSan, they will also contain bits ubsan_cxx runtime.
llvm-svn: 235924
Add a fake linker in to a sysroot to use for testing the driver's tool
invocation. Should make the test behave similarly on all platforms. Addresses
review comments from Reid Kleckner from SVN r220546.
llvm-svn: 220625
Patch by Rafael Auler!
This patch addresses PR15171 and teaches Clang how to call other tools
with response files, when the command line exceeds system limits. This
is a problem for Windows systems, whose maximum command-line length is
32kb.
I introduce the concept of "response file support" for each Tool object.
A given Tool may have full support for response files (e.g. MSVC's
link.exe) or only support file names inside response files, but no flags
(e.g. Apple's ld64, as commented in PR15171), or no support at all (the
default case). Therefore, if you implement a toolchain in the clang
driver and you want clang to be able to use response files in your
tools, you must override a method (getReponseFileSupport()) to tell so.
I designed it to support different kinds of tools and
internationalisation needs:
- VS response files ( UTF-16 )
- GNU tools ( uses system's current code page, windows' legacy intl.
support, with escaped backslashes. On unix, fallback to UTF-8 )
- Clang itself ( UTF-16 on windows, UTF-8 on unix )
- ld64 response files ( only a limited file list, UTF-8 on unix )
With this design, I was able to test input file names with spaces and
international characters for Windows. When the linker input is large
enough, it creates a response file with the correct encoding. On a Mac,
to test ld64, I temporarily changed Clang's behavior to always use
response files regardless of the command size limit (avoiding using huge
command line inputs). I tested clang with the LLVM test suite (compiling
benchmarks) and it did fine.
Test Plan: A LIT test that tests proper response files support. This is
tricky, since, for Unix systems, we need a 2MB response file, otherwise
Clang will simply use regular arguments instead of a response file. To
do this, my LIT test generate the file on the fly by cloning many -DTEST
parameters until we have a 2MB file. I found out that processing 2MB of
arguments is pretty slow, it takes 1 minute using my notebook in a debug
build, or 10s in a Release build. Therefore, I also added "REQUIRES:
long_tests", so it will only run when the user wants to run long tests.
In the full discussion in
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20130408/171463.html,
Rafael Espindola discusses a proper way to test
llvm::sys::argumentsFitWithinSystemLimits(), and, there, Chandler
suggests to use 10 times the current system limit (20MB resp file), so
we guarantee that the system will always use response file, even if a
new linux comes up that can handle a few more bytes of arguments.
However, by testing with a 20MB resp file, the test takes long 8 minutes
just to perform a silly check to see if the driver will use a response
file. I found it to be unreasonable. Thus, I discarded this approach and
uses a 2MB response file, which should be enough.
Reviewers: asl, rafael, silvas
Reviewed By: silvas
Subscribers: silvas, rnk, thakis, cfe-commits
Differential Revision: http://reviews.llvm.org/D4897
llvm-svn: 217792
modern Debian-based distributions) due to on-going multiarch madness.
It appears that when the multiarch heeader search support went into the
clang driver, it went in in a quite bad state. The order of includes
completely failed to match the order exhibited by GCC, and in a specific
case -- when the GCC triple and the multiarch triple don't match as with
i686-linux-gnu and i386-linux-gnu -- we would absolutely fail to find
the libstdc++ target-specific header files.
I assume that folks who have been using Clang on Ubuntu 32-bit systems
have been applying weird patches to hack around this. I can't imagine
how else it could have worked. This was originally reported by a 64-bit
operating system user who had a 32-bit crosscompiler installed. We tried
to use that rather than the bi-arch support of the 64-bit compiler, but
failed due to the triple differences.
I've corrected all the wrong orderings in the existing tests and added
a specific test for the multiarch triple strings that are different in
a significant way. This should significantly improve the usability of
Clang when checked out vanilla from upstream onto Ubuntu machines with
an i686 GCC installation for whatever reason.
llvm-svn: 216531
This patch aims at fixing PR17239.
This bug happens because the /link (clang-cl.exe argument) is marked as
"consume all remaining arguments". However, when inside a response file,
/link should only consume all remaining arguments inside the response
file where it is located, not the entire command line after expansion.
The LLVM side of the patch will change the semantics of the
RemainingArgsClass kind to always consume only until the end of the
response file when the option originally came from a response file.
There are only two options in this class: dash dash (--) and /link.
This is the Clang side of the patch in http://reviews.llvm.org/D4899
Reviewered By: rafael, rnk
Differential Revision: http://reviews.llvm.org/D4900
Patch by Rafael Auler!
llvm-svn: 216281
of MIPS toolchains.
The uCLibc implemented for multiple architectures. A couple of MIPS toolchains
contains both uCLibc and glibc implementation so these options allow to select
used C library.
Initially -muclibc / -mglibc (as well as -mbionic) have been implemented in gcc
for various architectures so they are not MIPS specific.
llvm-svn: 215552
Summary:
* Support the multilib layout used by the mips-img-linux-gnu
* Recognize mips{,64}{,el}-img-linux-gnu as being aliases of mips-img-linux-gnu
* Use the correct dynamic linker for mips-img-linux-gnu
* Make mips32r6/mips64r6 the default CPU for mips-img-linux-gnu
Subscribers: mpf
Differential Revision: http://reviews.llvm.org/D4436
llvm-svn: 212719
This commit implements the -fuse-ld= option, so that the user
can specify -fuse-ld=bfd to use ld.bfd.
This commit re-applies r194328 with some test case changes.
It seems that r194328 was breaking macosx or mingw build
because clang can't find ld.bfd or ld.gold in the given sysroot.
We should use -B to specify the executable search path instead.
Patch originally by David Chisnall.
llvm-svn: 211785
On PowerPC LE the system uses the /lib64/ld64.so.2 dynamic linker name
instead of /lib64/ld64.so.1 (to indicate the ELFv2 ABI version).
This fixes the clang driver to pass the appropriate -dynamic-linker
setting, and adds some more tests to linux-ld.c.
llvm-svn: 211360
There was already partial support for multi-arch on powerpc64le,
but the MultiarchIncludeDirs setting was missing. This patch
adds the appropriate definition, and also extends the
linux-header-search.cpp test case to verify an Ubuntu 14.04
powerpc64le tree.
llvm-svn: 211359
iterating over different library path suffixes and different library versions.
To find the most appropriate library for the given command line flags we
iterate over a set of disk paths. Before probe each path the already
detected set of multilibs are cleared. If the set of paths contains
existing paths which do not satisfy command line flags or do not contain
necessary libraries and object files at all we might lose found multilibs.
The patch updates variables which hold detected multilibs if we really find
a new multilib matches command line flags.
The patch reviewed by Jon Roelofs.
llvm-svn: 208523
line arguments and directories tree. The old toolchain selection heuristics
worked incorrectly when user has a reduced MIPS toolchain supports
the O32 ABI only.
Patch reviewed by Jonathan Roelofs, David Majnemer.
llvm-svn: 202873
This refactors some of the Darwin toolchain classification to give a more solid
distinction between the three primary Darwin platforms (OS X, IOS and IOS
simulator) so that a 4th choice can be added temporarily: embedded MachO
targets.
Longer term, this support will be factored out into a separate class and no
longer classified as "darwin-eabi", but the refactoring should still be useful.
llvm-svn: 197148
By adding a default config.excludes pattern we can avoid individual
suppressions in subdirectories.
This matches LLVM's lit.cfg which also excludes a few other common non-test
filenames for consistency.
llvm-svn: 194814
This adds a new option -fprofile-sample-use=filename to Clang. It
tells the driver to schedule the SampleProfileLoader pass and passes
on the name of the profile file to use.
llvm-svn: 194567
which doesn't use that multilib. As a consequence, fix Clang's support
for cross compiling environments that were relying on this quirk to
ensure the correct library search path ordering.
This also re-instates the new test cases from Rafael's r193528 for
cross-compiling to ARM on Ubuntu 13.10 without any of the changes to the
existing test cases (they were no longer needed).
This solution was the result of a lot of IRC debugging and trying to
understand *exactly* what quirk was being relied upon. It took some time
for me to figure out that it was the use of 'lib32' is a multilib that
was throwing a wrench in the works.
In case you are thinking that its silly to use a multilib of 'lib' at
all, entertainingly, GCC does so as well (you can see it with the
.../lib/../lib/crt1.o pattern it uses), and the 2-phase sequence of
search paths (multilib followed by non-multilib) has observable (if
dubious) consequences. =/ Yuck.
llvm-svn: 193601
With this patch we correctly determine that ubuntu's ARM tree is not biarch
and use "lib" istead of "lib32".
Without this patch the search inside the arm tree for the crt files was failing
and we would end up trying to use the i686 ones in lib32.
llvm-svn: 193528
which add another wrinkle to the installation of the libstdc++ headers.
Add at least some basic testing of the weirdnesses of Gentoo's layout.
llvm-svn: 189212
directory for programs used by the driver is actually the standard
behavior we want to be compatible with GCC cross compilers -- it isn't
specific to SUSE or any other distro.
Also start fleshing out testing of the different cross compilation
patterns, both with a new very bare-bones tree of cross compilers and by
extending the multilib trees. Currently, we don't correctly model doing
a cross compile using the non-triple target of a bi-arch GCC install,
but I'll add support for that (and tests) next.
llvm-svn: 184499
Sourcery CodeBench and modern FSF Mips toolchains require a bit more
complicated algorithm to calculate headers, libraries and sysroot paths
than implemented by Clang driver now. The main problem is that all these
paths depend on a set of command line arguments additionally to a target
triple value. For example, let $TC is a toolchain installation directory.
If we compile big-endian 32-bit mips code, crtbegin.o is in the
$TC/lib/gcc/mips-linux-gnu/4.7.2 folder and the toolchain's linker requires
--sysroot=$TC/mips-linux-gnu/libc argument. If we compile little-endian
32-bit soft-float mips code, crtbegin.o is in the
$TC/lib/gcc/mips-linux-gnu/4.7.2/soft-float/el folder and the toolchain's
linker requires --sysroot=$TC/mips-linux-gnu/libc/soft-float/el argument.
1. Calculate MultiarchSuffix using all necessary command line options and
use this MultiarchSuffix to detect crtbegin.o location in the
GCCInstallationDetector::ScanLibDirForGCCTriple() routine.
2. If a user does not provide --sysroot argument to the driver explicitly,
calculate new sysroot value based on command line options. Then use this
calculated sysroot path:
a. To populate a file search paths list in the Linux::Linux() constructor.
b. To find Mips toolchain specific include headers directories
in the Linux::AddClangSystemIncludeArgs() routine.
c. To provide -–sysroot argument for a linker.
Note:
- The FSF's tree slightly differs (folder names) and is not supported
yet.
- New addExternCSystemIncludeIfExits() routine is a temporary solution.
I plan to move path existence check to the addExternCSystemInclude()
routine by a separate commit.
The patch reviewed by Rafael Espindola.
http://llvm-reviews.chandlerc.com/D644
llvm-svn: 179934
linker via --dynamic-list instead of using --export-dynamic. This reduces the
size of the dynamic symbol table, and thus of the binary (in some cases by up
to ~30%).
llvm-svn: 177783
* Look for i686-linux-android under <sysroot>/lib/gcc.
* This patch also slightly enhance the test suite for
Android GCC toolchain detection.
llvm-svn: 169557
paths
- Inherit from Linux rather than ToolChain
- Override AddClangSystemIncludeArgs and AddClangCXXStdlibIncludeArgs
to properly set include paths.
llvm-svn: 169495
is not a directory, Driver::GetProgramPath() routine does not try to append
the program name as a "path component" to it. It just joins the "prefix" with
the program name and checks the resulting path existence.
The patch reviewed by Rafael Espindola.
llvm-svn: 167114
crtfastmath.o contains routines to set the floating point flags to a faster,
unsafe mode. Linking it in speeds up code dealing with denormals significantly
(PR14024).
For now this is only enabled on linux where I can test it and crtfastmath.o is
widely available. We may want to provide a similar file with compiler-rt
eventually and/or enable it on other platforms too.
llvm-svn: 165240
1. Add mipsel-linux-android to the list of valid MIPS target triples.
2. Add <gcc install path>/mips-r2 to the list of toolchain specific path
prefixes if target is mipsel-linux-android.
The patch reviewed by Logan Chien.
llvm-svn: 165131
The Freescale SDK is based on OpenEmbedded, and this might be useful
for other OpenEmbedded-based configurations as well.
With minor modifications, patch by Tobias von Koch!
llvm-svn: 164177
This change adds detection of C++ headers and libraries paths when
building with the standalone toolchain from Android NDK. They are in a
slightly unusual place.
llvm-svn: 163109
Patch from Michel Dänzer, sent our way via Jeremy Huddleston who added
64-bit support. I just added one other place where powerpc64-linux-gnu
was missing (we only had powerpc64-unknown-linux-gnu).
I've also added a tree to test out the debian multiarch stuff. I don't
use debian regularly, so I'm not certain this is entirely accurate. If
anyone wants to check it against a debian system and fix any
inaccuracies, fire away. This way at least folks can see how this is
*supposed* to be tested.
It'd be particularly good to get the Debian MIPS toolchains tested in
this way.
llvm-svn: 151482
by -target and similar options. As discussed in PR 12026, the change
broke support for target-prefixed tools, i.e. calling x86_64--linux-ld
when compiling for x86_64--linux. Improve the test cases added
originally in r149083 to not require execution, just executable files.
Document the hack with appropiate FIXME comments.
llvm-svn: 151185
both actually tests what it wants to, doesn't have bogus and broken
assertions in it, and is also formatted much more cleanly and
consistently. Probably still some more that can be improved here, but
its much better.
Original commit message:
----
Try to unbreak the FreeBSD toolchain's detection of 32-bit targets
inside a 64-bit freebsd machine with the 32-bit compatibility layer
installed. The FreeBSD image always has the /usr/lib32 directory, so
test for the more concrete existence of crt1.o. Also enhance the tests
for freebsd to clarify what these trees look like and exercise the new
code.
Thanks to all the FreeBSD folks for helping me understand what caused
the failure and how we might fix it. =] That helps a lot. Also, yay
build bots.
llvm-svn: 149011
Original log:
Author: chandlerc <chandlerc@91177308-0d34-0410-b5e6-96231b3b80d8>
Date: Wed Jan 25 21:32:31 2012 +0000
Try to unbreak the FreeBSD toolchain's detection of 32-bit targets
inside a 64-bit freebsd machine with the 32-bit compatibility layer
installed. The FreeBSD image always has the /usr/lib32 directory, so
test for the more concrete existence of crt1.o. Also enhance the tests
for freebsd to clarify what these trees look like and exercise the new
code.
Thanks to all the FreeBSD folks for helping me understand what caused
the failure and how we might fix it. =] That helps a lot. Also, yay
build bots.
llvm-svn: 148993
inside a 64-bit freebsd machine with the 32-bit compatibility layer
installed. The FreeBSD image always has the /usr/lib32 directory, so
test for the more concrete existence of crt1.o. Also enhance the tests
for freebsd to clarify what these trees look like and exercise the new
code.
Thanks to all the FreeBSD folks for helping me understand what caused
the failure and how we might fix it. =] That helps a lot. Also, yay
build bots.
llvm-svn: 148981
freebsd test so that it's behavior isn't dependent on the filesystem of
the host running the tests. This should revive the build bots at least.
The tests and the trees still need a lot of love to make them as useful
and easy to maintain as linux-ld.c.
llvm-svn: 148949
version of Ubuntu. It has a very broken multiarch configuration, and so
we need special logic to handle it correctly. Fixing and testing this
uncovered a few other trivial issues with the logic that are fixed as
well.
I added tests to cover this as it is hard to notice if you install
recent versions of the OS.
llvm-svn: 144165
edge cases and have better behavior. Specifically, we should actually
prefer the general '4.6' version string over the '4.6.1' string, as
'4.6.2' should be able to replace it without breaking rpaths or any
other place that these paths have been embedded. Debian-based
distributions are already using a path structure with symlinks to
achieve in-place upgrades for patch versions. Now our parsing reflects
this and we select the shorter paths instead of the longer paths.
A separate issue was that we would not parse a leading patch version
number even in the presence of a suffix. The above change makes this
more problematic as it would cause a suffix being added to make us treat
the entire thing as patch-version-agnostic, which it isn't. This changes
the logic to distinguish between '4.4.x' and 4.4.1-x', and retain that
the latter has *some* patch number information. Currently, we always
bias toward the shorter and more canonical version strings. If it
becomes important we can add more Debian like rules to produce sequences
such as '4.4.1b' > '4.4.1' > '4.4.1-rc3' > '4.4.1-rc2' > '4.4.1-pre5',
but I'm very doubtful this will ever matter or be desirable.
I've made the tests for this logic a bit more interesting, and added
some specific tests for logic that is now different.
llvm-svn: 143841
this saga. Teach the driver to detect a GCC installed along side Clang
using the existing InstalledDir support in the Clang driver. This makes
a lot of Clang's behavior more automatic when it is installed along side
GCC.
Also include the first test cases (more to come, honest) which test both
the install directory behavior, and the version sorting behavior to show
that we're actually searching for the best candidate GCC installation
now.
llvm-svn: 141145
configuration, although the test still stubs out more directories than
are necessary or common in order to exercise all of the lookup paths
observed with upstream GCC.
This finishes testing the distribution-independent and
GCC-installation-independent parts of the library path search logic.
More testing is still needed for the triple detection, GCC-installation
detection, and handling distributions with unusual configurations.
llvm-svn: 141000
enabled for debian hosts, which is quite odd. I think all restriction on
when Clang attempts to use a multilib installation should go away. Clang
is fundamentally a cross compiler. It behaves more like GCC when built
as a cross compiler, and so it should just use multilib installs when
they are present on the system. However, there is a very specific
exemption for Exherbo, which I can't test on, so I'm leaving that in
place.
With this, check in a generic test tree for multilib on a 32-bit host.
This stubs out many directories that most distributions don't use but
that uptsream GCC supports. This is intended to be an agnostic test that
the driver behaves properly compared with the GCC driver it aims for
compatibility with.
Also, fix a bug in the driver that this testing exposed (see!) where it
was incorrectly testing the target architecture rather than the host
architecture.
If anyone is having trouble with the tree-structure stubs I'm creating
to test this, let me know and I can revisit the design. I chose this
over (for example) a tar-ball in order to make tests run faster at the
small, hopefully amortized VCS cost.
llvm-svn: 140999
This requires fixing a latent bug -- if we used the default host triple
instead of an autodetected triple to locate GCC's installation, we
didn't go back and fix the GCC triple. Correct that with a pile of
hacks. This entire routine needs a major refactoring which I'm saving
for a subsequent commit. Essentially, the detection of the GCC triple
should be hoisted into the same routine as we locate the GCC
installation: the first is intrinsically tied to the latter. Then the
routine will just return the triple and base directory.
Also start to bring the rest of the library search path logic under
test, including locating crtbegin.o. Still need to test the multilib and
other behaviors, but there are also bugs in the way of that.
llvm-svn: 140995
This is still very much a WIP, but sysroot was completely broken before
this so we are moving closer to correctness.
The crux of this is that 'ld' (on Linux, the only place I'm touching
here) doesn't apply the sysroot to any flags given to it. Instead, the
driver must translate all the paths it adds to the link step with the
system root. This is easily observed by building a GCC that supports
sysroot, and checking its driver output.
This patch just fixes the non-multilib library search paths. We should
also use this in many other places, but first things first.
This also allows us to make the Linux 'ld' test independent of the host
system. This in turn will allow me to check in test tree configurations
based on various different distro's configuration. Again, WIP.
llvm-svn: 140990