Commit Graph

188 Commits

Author SHA1 Message Date
Chandler Carruth 70c61c1a8a [PM/AA] Start refactoring AliasAnalysis to remove the analysis group and
port it to the new pass manager.

All this does is extract the inner "location" class used by AA into its
own full fledged type. This seems *much* cleaner as MemoryDependence and
soon MemorySSA also use this heavily, and it doesn't make much sense
being inside the AA infrastructure.

This will also make it much easier to break apart the AA infrastructure
into something that stands on its own rather than using the analysis
group design.

There are a few places where this makes APIs not make sense -- they were
taking an AliasAnalysis pointer just to build locations. I'll try to
clean those up in follow-up commits.

Differential Revision: http://reviews.llvm.org/D10228

llvm-svn: 239003
2015-06-04 02:03:15 +00:00
Ahmed Bougacha 97876fa894 [MemCpyOpt] Do move the memset, but look at its dest's dependencies.
In effect a partial revert of r237858, which was a dumb shortcut.
Looking at the dependencies of the destination should be the proper
fix: if the new memset would depend on anything other than itself,
the transformation isn't correct.

llvm-svn: 237874
2015-05-21 01:43:39 +00:00
Ahmed Bougacha 0541c67ae7 [MemCpyOpt] Pass Instruction to IRBuilder, no need for NextNode. NFC.
We're erasing the instructions anyway.

llvm-svn: 237861
2015-05-21 00:08:35 +00:00
Ahmed Bougacha 5e0f425c27 [MemCpyOpt] Don't move the memset when optimizing memset+memcpy.
Fixes PR23599, another miscompile introduced by r235232: when there is
another dependency on the destination of the created memset (i.e., the
part of the original destination that the memcpy doesn't depend on)
between the memcpy and the original memset, we would insert the created
memset after the memcpy, and thus after the other dependency.

Instead, insert the created memset right after the old one.

llvm-svn: 237858
2015-05-20 23:55:16 +00:00
Ahmed Bougacha f8fa3b8d4b [MemCpyOpt] Turn memcpy from just-memset'd source into memset.
There's no point in copying around constants, so, when all else fails,
we can still transform memcpy of memset into two independent memsets.

To quote the example, we can turn:
  memset(dst1, c, dst1_size);
  memcpy(dst2, dst1, dst2_size);
into:
  memset(dst1, c, dst1_size);
  memset(dst2, c, dst2_size);
When dst2_size <= dst1_size.

Like r235232 for copy constructors, this can occur in move constructors.

Differential Revision: http://reviews.llvm.org/D9682

llvm-svn: 237506
2015-05-16 01:32:26 +00:00
Ahmed Bougacha 15a31f67f7 [MemCpyOpt] Remove dead argument. NFC.
llvm-svn: 237503
2015-05-16 01:23:47 +00:00
Ahmed Bougacha b61696656e [MemCpyOpt] Look at any dependency -not just source- for memset+memcpy.
This fixes another miscompile introduced by r235232: when there was a
dependency on the memcpy destination other than the memset, we would
ignore it, because we only looked at the source dependency.

It was a mistake to use SrcDepInfo.  Instead, just use DepInfo.

llvm-svn: 237066
2015-05-11 23:09:46 +00:00
Ahmed Bougacha 9692e30e8b [MemCpyOpt] Use the raw i8* dest when optimizing memset+memcpy.
MemIntrinsic::getDest() looks through pointer casts, and using it
directly when building the new GEP+memset results in stuff like:

  %0 = getelementptr i64* %p, i32 16
  %1 = bitcast i64* %0 to i8*
  call ..memset(i8* %1, ...)

instead of the correct:

  %0 = bitcast i64* %p to i8*
  %1 = getelementptr i8* %0, i32 16
  call ..memset(i8* %1, ...)

Instead, use getRawDest, which just gives you the i8* value.
While there, use the memcpy's dest, as it's live anyway.

In most cases, when the optimization triggers, the memset and memcpy
sizes are the same, so the built memset is 0-sized and eliminated.
The problem occurs when they're different.

Fixes a regression caused by r235232: PR23300.

llvm-svn: 235419
2015-04-21 21:28:33 +00:00
Ahmed Bougacha 05b72c1fd8 [MemCpyOpt] Don't force i64 when promoting memset/memcpy sizes.
Harden r235258 to support any integer bitwidth.  The quick glance at
the reference made me think only i32 and i64 were valid types, but
they're not special, so any overload is legal.

Thanks to David Majnemer for noticing!

llvm-svn: 235261
2015-04-18 23:06:04 +00:00
Ahmed Bougacha 7216ccc3f3 [MemCpyOpt] Promote both memset/memcpy sizes if differently typed.
Followup to r235232, which caused PR23278.

We can't assume the memset and memcpy sizes have the same type, as
nothing in the language reference prevents that.
Instead, zext both to i64 if they disagree.

While there, robustify tests by using i8 %c rather than i8 0 for the
memset character.

llvm-svn: 235258
2015-04-18 17:57:41 +00:00
Ahmed Bougacha 83f78a459a [MemCpyOpt] Optimize double-storing by memset+memcpy.
A common idiom in some code is to do the following:

  memset(dst, 0, dst_size);
  memcpy(dst, src, src_size);

Some of the memset is redundant; instead, we can do:

  memcpy(dst, src, src_size);
  memset(dst + src_size, 0,
         dst_size <= src_size ? 0 : dst_size - src_size);

Original patch by: Joel Jones
Differential Revision: http://reviews.llvm.org/D498

llvm-svn: 235232
2015-04-17 22:20:57 +00:00
Benjamin Kramer 3a09ef64ee [CallSite] Make construction from Value* (or Instruction*) explicit.
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.

Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this: 
  if (auto CS = CallSite(V)) // think dyn_cast
instead of:
  if (CallSite CS = V)

This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.

llvm-svn: 234601
2015-04-10 14:50:08 +00:00
Benjamin Kramer 799003bf8c Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used.
llvm-svn: 232998
2015-03-23 19:32:43 +00:00
Mehdi Amini a28d91d81b DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
2015-03-10 02:37:25 +00:00
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
Bjorn Steinbrink 71bf3b800a Properly update AA metadata when performing call slot optimization
Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D7482

llvm-svn: 228500
2015-02-07 17:54:36 +00:00
Chandler Carruth b98f63dbdb [PM] Separate the TargetLibraryInfo object from the immutable pass.
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.

Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.

llvm-svn: 226157
2015-01-15 10:41:28 +00:00
Chandler Carruth 62d4215baa [PM] Move TargetLibraryInfo into the Analysis library.
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.

This is in preparation for porting this analysis to the new pass
manager.

No functionality changed, and updates inbound for Clang and Polly.

llvm-svn: 226078
2015-01-15 02:16:27 +00:00
Chandler Carruth 66b3130cda [PM] Split the AssumptionTracker immutable pass into two separate APIs:
a cache of assumptions for a single function, and an immutable pass that
manages those caches.

The motivation for this change is two fold. Immutable analyses are
really hacks around the current pass manager design and don't exist in
the new design. This is usually OK, but it requires that the core logic
of an immutable pass be reasonably partitioned off from the pass logic.
This change does precisely that. As a consequence it also paves the way
for the *many* utility functions that deal in the assumptions to live in
both pass manager worlds by creating an separate non-pass object with
its own independent API that they all rely on. Now, the only bits of the
system that deal with the actual pass mechanics are those that actually
need to deal with the pass mechanics.

Once this separation is made, several simplifications become pretty
obvious in the assumption cache itself. Rather than using a set and
callback value handles, it can just be a vector of weak value handles.
The callers can easily skip the handles that are null, and eventually we
can wrap all of this up behind a filter iterator.

For now, this adds boiler plate to the various passes, but this kind of
boiler plate will end up making it possible to port these passes to the
new pass manager, and so it will end up factored away pretty reasonably.

llvm-svn: 225131
2015-01-04 12:03:27 +00:00
Bjorn Steinbrink d20816fde9 Allow call-slop optzn for destinations with a suitable dereferenceable attribute
Summary:
Currently, call slot optimization requires that if the destination is an
argument, the argument has the sret attribute. This is to ensure that
the memory access won't trap. In addition to sret, we can also allow the
optimization to happen for arguments that have the new dereferenceable
attribute, which gives the same guarantee.

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D5832

llvm-svn: 219950
2014-10-16 19:43:08 +00:00
Hal Finkel 60db05896a Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.

As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.

The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.

Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.

This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).

llvm-svn: 217342
2014-09-07 18:57:58 +00:00
Chandler Carruth 18cee1defc Fix a really bad miscompile introduced in r216865 - the else-if logic
chain became completely broken here as *all* intrinsic users ended up
being skipped, and the ones that seemed to be singled out were actually
the exact wrong set.

This is a great example of why long else-if chains can be easily
confusing. Switch the entire code to use early exits and early continues
to have simpler (and more importantly, correct) logic here, as well as
fixing the reversed logic for detecting and continuing on lifetime
intrinsics.

I've also significantly cleaned up the test case and added another test
case demonstrating an example where the optimization is not (trivially)
safe to perform.

llvm-svn: 216871
2014-09-01 10:09:18 +00:00
Nick Lewycky fc243d54d2 Ignore lifetime intrinsics in use list for MemCpyOptimizer. Patch by Luqman Aden, review by Hal Finkel.
llvm-svn: 216865
2014-09-01 06:03:11 +00:00
Nick Lewycky 703e488ed9 Don't eliminate memcpy's when the address of the pointer may itself be relevant. Fixes PR18304. Patch by David Wiberg!
llvm-svn: 212970
2014-07-14 18:52:02 +00:00
Craig Topper f40110f4d8 [C++] Use 'nullptr'. Transforms edition.
llvm-svn: 207196
2014-04-25 05:29:35 +00:00
Chandler Carruth 964daaaf19 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Transforms/...
edition.

This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.

Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.

llvm-svn: 206844
2014-04-22 02:55:47 +00:00
Nick Lewycky 77d5fb40c8 Treat lifetime.start'd memory like we treat freshly alloca'd memory. Patch by Björn Steinbrink!
llvm-svn: 204876
2014-03-26 23:45:15 +00:00
Benjamin Kramer 3ef5e46b6d MemCpyOpt: When merging memsets also merge the trivial case of two memsets with the same destination.
The testcase is from PR19092, but I think the bug described there is actually a clang issue.

llvm-svn: 203489
2014-03-10 21:05:13 +00:00
Chandler Carruth cdf4788401 [C++11] Add range based accessors for the Use-Def chain of a Value.
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
   detail
2) Change it to actually be a *Use* iterator rather than a *User*
   iterator.
3) Add an adaptor which is a User iterator that always looks through the
   Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
   they wanted a use_iterator (and to explicitly dig out the User when
   needed), or a user_iterator which makes the Use itself totally
   opaque.

Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.

The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.

However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]

llvm-svn: 203364
2014-03-09 03:16:01 +00:00
Craig Topper 3e4c697ca1 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 202953
2014-03-05 09:10:37 +00:00
Chandler Carruth 03eb0de93d [Modules] Move GetElementPtrTypeIterator into the IR library. As its
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.

Another step of modularizing the support library.

llvm-svn: 202815
2014-03-04 10:40:04 +00:00
Rafael Espindola 935125126c Make DataLayout a plain object, not a pass.
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.

llvm-svn: 202168
2014-02-25 17:30:31 +00:00
Rafael Espindola 37dc9e19f5 Rename many DataLayout variables from TD to DL.
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.

llvm-svn: 201827
2014-02-21 00:06:31 +00:00
Nick Lewycky 993849490e A memcpy out of an fresh alloca is a no-op, delete it. Patch by Patrick Walton!
llvm-svn: 200907
2014-02-06 06:29:19 +00:00
Paul Robinson af4e64d095 Disable most IR-level transform passes on functions marked 'optnone'.
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.

llvm-svn: 200892
2014-02-06 00:07:05 +00:00
Nick Lewycky 00703e76dc Self-memcpy-elision and memcpy of constant byte to memset transforms don't care how many bytes you were trying to transfer. Sink that safety test after those transforms. Noticed by inspection.
llvm-svn: 200726
2014-02-04 00:18:54 +00:00
Matt Arsenault 84de61148b Handle an addrspacecast case in memcpyopt
llvm-svn: 199836
2014-01-22 21:53:19 +00:00
Chandler Carruth 73523021d0 [PM] Split DominatorTree into a concrete analysis result object which
can be used by both the new pass manager and the old.

This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.

The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.

Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.

llvm-svn: 199104
2014-01-13 13:07:17 +00:00
Chandler Carruth 5ad5f15cff [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

llvm-svn: 199082
2014-01-13 09:26:24 +00:00
Matt Arsenault 899f7d2b00 MemCpyOptimizer: Use max legal int size instead of pointer size
If there are no legal integers, assume 1 byte.

This makes more sense than using the pointer size as
a guess for the maximum GPR width.

It is conceivable to want to use some 64-bit pointers
on a target where 64-bit integers aren't legal.

llvm-svn: 190817
2013-09-16 22:43:16 +00:00
Craig Topper 31ee5866de Use SmallVectorImpl::iterator/const_iterator instead of SmallVector to avoid specifying the vector size.
llvm-svn: 185540
2013-07-03 15:07:05 +00:00
Shuxin Yang 140d592d84 Fix a potential bug in r183584.
r183584 tries to derive some info from the code *AFTER* a call and apply
these derived info to the code *BEFORE* the call, which is not always safe
as the call in question may never return, and in this case, the derived
info is invalid.
  
  Thank Duncan for pointing out this potential bug.

rdar://14073661 

llvm-svn: 183606
2013-06-08 04:56:05 +00:00
Shuxin Yang bd254f2601 Fix an assertion in MemCpyOpt pass.
The MemCpyOpt pass is capable of optimizing:
      callee(&S); copy N bytes from S to D.
    into:
      callee(&D);
subject to some legality constraints. 

  Assertion is triggered when the compiler tries to evalute "sizeof(typeof(D))",
while D is an opaque-typed, 'sret' formal argument of function being compiled.
i.e. the signature of the func being compiled is something like this:
  T caller(...,%opaque* noalias nocapture sret %D, ...)

  The fix is that when come across such situation, instead of calling some
utility functions to get the size of D's type (which will crash), we simply
assume D has at least N bytes as implified by the copy-instruction.

rdar://14073661 

llvm-svn: 183584
2013-06-07 22:45:21 +00:00
Chandler Carruth 9fb823bbd4 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00
Chandler Carruth ed0881b2a6 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

llvm-svn: 169131
2012-12-03 16:50:05 +00:00
Chandler Carruth 5da3f0512e Revert the majority of the next patch in the address space series:
r165941: Resubmit the changes to llvm core to update the functions to
         support different pointer sizes on a per address space basis.

Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.

However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.

In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.

In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.

This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.

llvm-svn: 167222
2012-11-01 09:14:31 +00:00
Micah Villmow 4bb926d91d Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis.
llvm-svn: 165941
2012-10-15 16:24:29 +00:00
Micah Villmow 0c61134d8d Revert 165732 for further review.
llvm-svn: 165747
2012-10-11 21:27:41 +00:00
Micah Villmow 083189730e Add in the first iteration of support for llvm/clang/lldb to allow variable per address space pointer sizes to be optimized correctly.
llvm-svn: 165726
2012-10-11 17:21:41 +00:00
Micah Villmow cdfe20b97f Move TargetData to DataLayout.
llvm-svn: 165402
2012-10-08 16:38:25 +00:00