The X86 musttail implementation finds register parameters to forward by
running the calling convention algorithm until a non-register location
is returned. However, assigning a vector memory location has the side
effect of increasing the function's stack alignment. We shouldn't
increase the stack alignment when we are only looking for register
parameters, so this change conditionalizes it.
llvm-svn: 258442
alignment requirements, for example in the case of vectors.
These requirements are exploited by the code generator by using
move instructions that have similar alignment requirements, e.g.,
movaps on x86.
Although the code generator properly aligns the arguments with
respect to the displacement of the stack pointer it computes,
the displacement itself may cause misalignment. For example if
we have
%3 = load <16 x float>, <16 x float>* %1, align 64
call void @bar(<16 x float> %3, i32 0)
the x86 back-end emits:
movaps 32(%ecx), %xmm2
movaps (%ecx), %xmm0
movaps 16(%ecx), %xmm1
movaps 48(%ecx), %xmm3
subl $20, %esp <-- if %esp was 16-byte aligned before this instruction, it no longer will be afterwards
movaps %xmm3, (%esp) <-- movaps requires 16-byte alignment, while %esp is not aligned as such.
movl $0, 16(%esp)
calll __bar
To solve this, we need to make sure that the computed value with which
the stack pointer is changed is a multiple af the maximal alignment seen
during its computation. With this change we get proper alignment:
subl $32, %esp
movaps %xmm3, (%esp)
Differential Revision: http://reviews.llvm.org/D12337
llvm-svn: 248786
Otherwise we'll attempt to forward ECX, EDX, and EAX for cdecl and
stdcall thunks, leaving us with no scratch registers for indirect call
targets.
Fixes PR22052.
llvm-svn: 225729
Previously I tried to plug musttail into the existing vararg lowering
code. That turned out to be a mistake, because non-vararg calls use
significantly different register lowering, even on x86. For example, AVX
vectors are usually passed in registers to normal functions and memory
to vararg functions. Now musttail uses a completely separate lowering.
Hopefully this can be used as the basis for non-x86 perfect forwarding.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6156
llvm-svn: 224745
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
llvm-svn: 214988
Otherwise we can end up with an argument frame size that is not a
multiple of stack slot size, which is very awkward.
This fixes PR20547, which was a bug in x86_64 Sys V vararg handling.
However, it's much easier to test this with x86 callee-cleanup
functions, which previously ended in "retl $6" instead of "retl $8".
This does affect behavior of all backends, but it presumably fixes the
same bug in all of them.
llvm-svn: 214980
Now even the small structures could be passed within byval (small enough
to be stored in GPRs).
In regression tests next function prototypes are checked:
PR15293:
%artz = type { i32 }
define void @foo(%artz* byval %s)
define void @foo2(%artz* byval %s, i32 %p, %artz* byval %s2)
foo: "s" stored in R0
foo2: "s" stored in R0, "s2" stored in R2.
Next AAPCS rules are checked:
5.5 Parameters Passing, C.4 and C.5,
"ParamSize" is parameter size in 32bit words:
-- NSAA != 0, NCRN < R4 and NCRN+ParamSize > R4.
Parameter should be sent to the stack; NCRN := R4.
-- NSAA != 0, and NCRN < R4, NCRN+ParamSize < R4.
Parameter stored in GPRs; NCRN += ParamSize.
llvm-svn: 181148
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Stack is formed improperly for long structures passed as byval arguments for
EABI mode.
If we took AAPCS reference, we can found the next statements:
A: "If the argument requires double-word alignment (8-byte), the NCRN (Next
Core Register Number) is rounded up to the next even register number." (5.5
Parameter Passing, Stage C, C.3).
B: "The alignment of an aggregate shall be the alignment of its most-aligned
component." (4.3 Composite Types, 4.3.1 Aggregates).
So if we have structure with doubles (9 double fields) and 3 Core unused
registers (r1, r2, r3): caller should use r2 and r3 registers only.
Currently r1,r2,r3 set is used, but it is invalid.
Callee VA routine should also use r2 and r3 regs only. All is ok here. This
behaviour is guessed by rounding up SP address with ADD+BFC operations.
Fix:
Main fix is in ARMTargetLowering::HandleByVal. If we detected AAPCS mode and
8 byte alignment, we waste odd registers then.
P.S.:
I also improved LDRB_POST_IMM regression test. Since ldrb instruction will
not generated by current regression test after this patch.
llvm-svn: 166018
ensureAlignment() in MachineFunction). Also, drop setMaxAlignment() in
favor of this new function. This creates a main entry point to setting
MaxAlignment, which will be helpful for future work. No functionality
change intended.
llvm-svn: 158758
No functional change intended.
Sorry for the churn. The iterator classes are supposed to help avoid
giant commits like this one in the future. The TableGen-produced
register lists are getting quite large, and it may be necessary to
change the table representation.
This makes it possible to do so without changing all clients (again).
llvm-svn: 157854
value type, so there is no point in passing it around using
an EVT. Use the simpler MVT everywhere. Rather than trying
to propagate this information maximally in all the code that
using the calling convention stuff, I chose to do a mainly
low impact change instead.
llvm-svn: 118167
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
llvm-svn: 108039
U utils/TableGen/FastISelEmitter.cpp
--- Reverse-merging r107943 into '.':
U test/CodeGen/X86/fast-isel.ll
U test/CodeGen/X86/fast-isel-loads.ll
U include/llvm/Target/TargetLowering.h
U include/llvm/Support/PassNameParser.h
U include/llvm/CodeGen/FunctionLoweringInfo.h
U include/llvm/CodeGen/CallingConvLower.h
U include/llvm/CodeGen/FastISel.h
U include/llvm/CodeGen/SelectionDAGISel.h
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/CallingConvLower.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
U lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
U lib/CodeGen/SelectionDAG/FastISel.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
U lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
U lib/CodeGen/SelectionDAG/InstrEmitter.cpp
U lib/CodeGen/SelectionDAG/TargetLowering.cpp
U lib/Target/XCore/XCoreISelLowering.cpp
U lib/Target/XCore/XCoreISelLowering.h
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86ISelLowering.h
llvm-svn: 107987