non-type template parameters of pointer-to-object and
pointer-to-function type. The most fun part of this is the use of
overload resolution to pick a function from the set of overloaded
functions that comes in as a template argument.
Also, fixed two minor bugs in this area:
- We were allowing non-type template parameters of type pointer to
void.
- We weren't patching up an expression that refers to an overloaded
function set via "&f" properly.
We're still not performing complete checking of the expression to be
sure that it is referring to an object or function with external
linkage (C++ [temp.arg.nontype]p1).
llvm-svn: 64266
We handle indentation of decls better.
We Indent extern "C" { } stuff better.
We print out structure contents more often.
We handle pass indentation information into the statement printer, so that
nested things come out more indented.
We print out FieldDecls.
We print out Vars.
We print out namespaces.
We indent functions better.
llvm-svn: 64232
arguments. This commit covers checking and merging default template
arguments from previous declarations, but it does not cover the actual
use of default template arguments when naming class template
specializations.
llvm-svn: 64229
memory representation (e.g., bool).
- This upgrades (downgrades) MultiSource/Applications/ClamAV/clamscan
to a miscompile and fixes
SingleSource/UnitTests/2003-05-31-CastToBool.
llvm-svn: 64194
disambiguation contexts, so that we properly parse template arguments
such as
A<int()>
as type-ids rather than as expressions. Since this can be confusing
(especially when the template parameter is a non-type template
parameter), we try to give a friendly error message.
Almost, eliminate a redundant error message (that should have been a
note) and add some ultra-basic checks for non-type template
arguments.
llvm-svn: 64189
to tell it that it wasn't (directly) designated. This way, we unwind
back to the explicit initializer list properly rather than getting
stuck in the wrong subobject. Fixes llvm.org/PR3519
llvm-svn: 64155
representation for template arguments. Also simplifies the interface
for ActOnClassTemplateSpecialization and eliminates some annoying
allocations of TemplateArgs.
My attempt at smart pointers for template arguments lists is
relatively lame. We can improve it once we're sure that we have the
right representation for template arguments.
llvm-svn: 64154
to a class template. For example, the template-id 'vector<int>' now
has a nice, sugary type in the type system. What we can do now:
- Parse template-ids like 'vector<int>' (where 'vector' names a
class template) and form proper types for them in the type system.
- Parse icky template-ids like 'A<5>' and 'A<(5 > 0)>' properly,
using (sadly) a bool in the parser to tell it whether '>' should
be treated as an operator or not.
This is a baby-step, with major problems and limitations:
- There are currently two ways that we handle template arguments
(whether they are types or expressions). These will be merged, and,
most likely, TemplateArg will disappear.
- We don't have any notion of the declaration of class template
specializations or of template instantiations, so all template-ids
are fancy names for 'int' :)
llvm-svn: 64153
than a Decl, which gives us some more flexibility to express the
results with the type system. There are no clients using this
flexibility yet, but it's meant to be able to describe qualified names
as written in the source (e.g., "foo::type") or template-ids that name
a class template specialization (e.g., "std::vector<INT>").
DeclSpec's TST_typedef has become TST_typename, to reflect its use to
describe types found by name (that may or may not be typedefs). The
type representation of a DeclSpec with TST_typename is an opaque
QualType pointer. All users of TST_typedef, both direct and indirect,
have been updated for these changes.
llvm-svn: 64141
If people could beat on it and let me know if there are any new
semantics required by newer language standards or DRs or any little
details I goofed on, I'd be happy to fix any issues found.
llvm-svn: 64079
the "system dirs win over user dirs" logic to framework and headermap
search locations as well as normal directories. This means that
clang t.m -F/System/Library/Frameworks will treat /System/Library/Frameworks
as a system directory not a user directory. If you use -v, the difference is:
Before:
ignoring nonexistent directory "/usr/libdata/gcc41"
ignoring duplicate framework "/System/Library/Frameworks"
#include "..." search starts here:
#include <...> search starts here:
After:
ignoring nonexistent directory "/usr/libdata/gcc41"
ignoring duplicate directory "/System/Library/Frameworks"
as it is a non-system directory that duplicates a system directory
#include "..." search starts here:
#include <...> search starts here:
This fixes rdar://6566429.
llvm-svn: 64060
- Currently, this is producing poor code, but we prefer correctness
to performance for now. Eventually we should be able to generally
avoid having to set the alignment when we control the alignment of
the alloca.
- This knocks out 33/1000 failures on my single argument ABI tests,
down to 22/1000 and 18 of these appear to be gcc bugs. Woot.
llvm-svn: 64001
- Made allocation of Stmt objects using vanilla new/delete a *compiler
error* by making this new/delete "protected" within class Stmt.
- Now the only way to allocate Stmt objects is by using the new
operator that takes ASTContext& as an argument. This ensures that
all Stmt nodes are allocated from the same (pool) allocator.
- Naturally, these two changes required that *all* creation sites for
AST nodes use new (ASTContext&). This is a large patch, but the
majority of the changes are just this mechanical adjustment.
- The above changes also mean that AST nodes can no longer be
deallocated using 'delete'. Instead, one most do
StmtObject->Destroy(ASTContext&) or do
ASTContextObject.Deallocate(StmtObject) (the latter not running the
'Destroy' method).
Along the way I also...
- Made CompoundStmt allocate its array of Stmt* using the allocator in
ASTContext (previously it used std::vector). There are a whole
bunch of other Stmt classes that need to be similarly changed to
ensure that all memory allocated for ASTs comes from the allocator
in ASTContext.
- Added a new smart pointer ExprOwningPtr to Sema.h. This replaces
the uses of llvm::OwningPtr within Sema, as llvm::OwningPtr used
'delete' to free memory instead of a Stmt's 'Destroy' method.
Big thanks to Doug Gregor for helping with the acrobatics of making
'new/delete' private and the new smart pointer ExprOwningPtr!
llvm-svn: 63997