types, as well as int<->ptr casts. This allows us to tailcall functions
with some trivial casts between the call and return (i.e. because the
return types disagree).
llvm-svn: 157798
This patch will optimize the following
movq %rdi, %rax
subq %rsi, %rax
cmovsq %rsi, %rdi
movq %rdi, %rax
to
cmpq %rsi, %rdi
cmovsq %rsi, %rdi
movq %rdi, %rax
Perform this optimization if the actual result of SUB is not used.
rdar: 11540023
llvm-svn: 157755
It helps compile exotic inline asm. In the test case, normal GR32
virtual registers use up eax-edx so the final GR32_ABCD live range has
no registers left. Since all the live ranges were tiny, we had no way of
prioritizing the smaller register class.
This patch allows tiny unspillable live ranges to be evicted by tiny
unspillable live ranges from a smaller register class.
<rdar://problem/11542429>
llvm-svn: 157715
Besides adding the new insertPass function, this patch uses it to
enhance the existing -print-machineinstrs so that the MachineInstrs
after a specific pass can be printed.
Patch by Bin Zeng!
llvm-svn: 157655
ranges for the instruction about to be bundled. This fixes a bug in an external
project where an assertion was triggered due to spurious 'multiple defs' within
the bundle.
Patch by Ivan Llopard. Thanks Ivan!
llvm-svn: 157632
Implemented IntItem - the wrapper around APInt. Why not to use APInt item directly right now?
1. It will very difficult to implement case ranges as series of small patches. We got several large and heavy patches. Each patch will about 90-120 kb. If you replace ConstantInt with APInt in SwitchInst you will need to changes at the same time all Readers,Writers and absolutely all passes that uses SwitchInst.
2. We can implement APInt pool inside and save memory space. E.g. we use several switches that works with 256 bit items (switch on signatures, or strings). We can avoid value duplicates in this case.
3. IntItem can be easyly easily replaced with APInt.
4. Currenly we can interpret IntItem both as ConstantInt and as APInt. It allows to provide SwitchInst methods that works with ConstantInt for non-updated passes.
Why I need it right now? Currently I need to update SimplifyCFG pass (EqualityComparisons). I need to work with APInts directly a lot, so peaces of code
ConstantInt *V = ...;
if (V->getValue().ugt(AnotherV->getValue()) {
...
}
will look awful. Much more better this way:
IntItem V = ConstantIntVal->getValue();
if (AnotherV < V) {
}
Of course any reviews are welcome.
P.S.: I'm also going to rename ConstantRangesSet to IntegersSubset, and CRSBuilder to IntegersSubsetMapping (allows to map individual subsets of integers to the BasicBlocks).
Since in future these classes will founded on APInt, it will possible to use them in more generic ways.
llvm-svn: 157576
definition in the map before calling itself to retrieve the
DIE for the declaration. Without this change, if this causes
getOrCreateSubprogramDIE to be recursively called on the definition,
it will create multiple DIEs for that definition. Fixes PR12831.
llvm-svn: 157541
SimplifyCFG tends to form a lot of 2-3 case switches when merging branches. Move
the most likely condition to the front so it is checked first and the others can
be skipped. This is currently not as effective as it could be because SimplifyCFG
destroys profiling metadata when merging branches and switches. Merging branch
weight metadata is tricky though.
This code touches at most 3 cases so I didn't use a proper sorting algorithm.
llvm-svn: 157521
to pass around a struct instead of a large set of individual values. This
cleans up the interface and allows more information to be added to the struct
for future targets without requiring changes to each and every target.
NV_CONTRIB
llvm-svn: 157479
The Hazard checker implements in-order contraints, or interlocked
resources. Ready instructions with hazards do not enter the available
queue and are not visible to other heuristics.
The major code change is the addition of SchedBoundary to encapsulate
the state at the top or bottom of the schedule, including both a
pending and available queue.
The scheduler now counts cycles in sync with the hazard checker. These
are minimum cycle counts based on known hazards.
Targets with no itinerary (x86_64) currently remain at cycle 0. To fix
this, we need to provide some maximum issue width for all targets. We
also need to add the concept of expected latency vs. minimum latency.
llvm-svn: 157427
Live ranges with a constrained register class may benefit from splitting
around individual uses. It allows the remaining live range to use a
larger register class where it may allocate. This is like spilling to a
different register class.
This is only attempted on constrained register classes.
<rdar://problem/11438902>
llvm-svn: 157354
Now that the coalescer keeps live intervals and machine code in sync at
all times, it needs to deal with identity copies differently.
When merging two virtual registers, all identity copies are removed
right away. This means that other identity copies must come from
somewhere else, and they are going to have a value number.
Deal with such copies by merging the value numbers before erasing the
copy instruction. Otherwise, we leave dangling value numbers in the live
interval.
This fixes PR12927.
llvm-svn: 157340
This helps compile time when the greedy register allocator splits live
ranges in giant functions. Without the bias, we would try to grow
regions through the giant edge bundles, usually to find out that the
region became too big and expensive.
If a live range has many uses in blocks near the giant bundle, the small
negative bias doesn't make a big difference, and we still consider
regions including the giant edge bundle.
Giant edge bundles are usually connected to landing pads or indirect
branches.
llvm-svn: 157174
With physreg joining out of the way, it is easy to recognize the
instructions that need their kill flags cleared while testing for
interference.
This allows us to skip the final scan of all instructions for an 11%
speedup of the coalescer pass.
llvm-svn: 157169
may be RAUW'd by the recursive call to LegalizeOps; instead, retrieve
the other operands when calling UpdateNodeOperands. Fixes PR12889.
llvm-svn: 157162
Dead code elimination during coalescing could cause a virtual register
to be split into connected components. The following rewriting would be
confused about the already joined copies present in the code, but
without a corresponding value number in the live range.
Erase all joined copies instantly when joining intervals such that the
MI and LiveInterval representations are always in sync.
llvm-svn: 157135
Dead code and joined copies are now eliminated on the fly, and there is
no need for a post pass.
This makes the coalescer work like other modern register allocator
passes: Code is changed on the fly, there is no pending list of changes
to be committed.
llvm-svn: 157132
The late dead code elimination is no longer necessary.
The test changes are cause by a register hint that can be either %rdi or
%rax. The choice depends on the use list order, which this patch changes.
llvm-svn: 157131
Before rewriting uses of one value in A to register B, check that there
are no tied uses. That would require multiple A values to be rewritten.
This bug can't bite in the current version of the code for a fairly
subtle reason: A tied use would have caused 2-addr to insert a copy
before the use. If the copy has been coalesced, it will be found by the
same loop changed by this patch, and the optimization is aborted.
This was exposed by 400.perlbench and lua after applying a patch that
deletes joined copies aggressively.
llvm-svn: 157130
Remaining virtreg->physreg copies were rematerialized during
updateRegDefsUses(), but we already do the same thing in joinCopy() when
visiting the physreg copy instruction.
Eliminate the preserveSrcInt argument to reMaterializeTrivialDef(). It
is now always true.
llvm-svn: 157103
Dead copies cause problems because they are trivial to coalesce, but
removing them gived the live range a dangling end point. This patch
enables full dead code elimination which trims live ranges to their uses
so end points don't dangle.
DCE may erase multiple instructions. Put the pointers in an ErasedInstrs
set so we never risk visiting erased instructions in the work list.
There isn't supposed to be any dead copies entering RegisterCoalescer,
but they do slip by as evidenced by test/CodeGen/X86/coalescer-dce.ll.
llvm-svn: 157101
Use a dedicated MachO load command to annotate data-in-code regions.
This is the same format the linker produces for final executable images,
allowing consistency of representation and use of introspection tools
for both object and executable files.
Data-in-code regions are annotated via ".data_region"/".end_data_region"
directive pairs, with an optional region type.
data_region_directive := ".data_region" { region_type }
region_type := "jt8" | "jt16" | "jt32" | "jta32"
end_data_region_directive := ".end_data_region"
The previous handling of ARM-style "$d.*" labels was broken and has
been removed. Specifically, it didn't handle ARM vs. Thumb mode when
marking the end of the section.
rdar://11459456
llvm-svn: 157062
It is no longer necessary to separate VirtCopies, PhysCopies, and
ImpDefCopies. Implicitly defined copies are extremely rare after we
added the ProcessImplicitDefs pass, and physical register copies are not
joined any longer.
llvm-svn: 157059
This has been disabled for a while, and it is not a feature we want to
support. Copies between physical and virtual registers are eliminated by
good hinting support in the register allocator. Joining virtual and
physical registers is really a form of register allocation, and the
coalescer is not properly equipped to do that. In particular, it cannot
backtrack coalescing decisions, and sometimes that would cause it to
create programs that were impossible to register allocate, by exhausting
a small register class.
It was also very difficult to keep track of the live ranges of aliasing
registers when extending the live range of a physreg. By disabling
physreg joining, we can let fixed physreg live ranges remain constant
throughout the register allocator super-pass.
One type of physreg joining remains: A virtual register that has a
single value which is a copy of a reserved register can be merged into
the reserved physreg. This always lowers register pressure, and since we
don't compute live ranges for reserved registers, there are no problems
with aliases.
llvm-svn: 157055
SelectionDAGBuilder::Clusterify : main functinality was replaced with CRSBuilder::optimize, so big part of Clusterify's code was reduced.
llvm-svn: 157046
non-profitable commute using outdated info. The test case would still fail
because of poor pre-RA schedule. That will be fixed by MI scheduler.
rdar://11472010
llvm-svn: 157038
Introduce the basic strategy for register pressure scheduling.
1) Respect target limits at all times.
2) Indentify critical register classes (pressure sets).
Track pressure within the scheduled region.
Avoid increasing scheduled pressure for critical registers.
3) Avoid exceeding the max pressure of the region prior to scheduling.
Added logic for picking between the top and bottom ready Q's based on
regpressure heuristics.
Status: functional but needs to be asjusted to achieve good results.
llvm-svn: 157006
RegisterCoalescer set <undef> flags on all operands of copy instructions
that are scheduled to be removed. This is so they won't affect
shrinkToUses() by introducing false register reads.
Make sure those <undef> flags are never cleared, or shrinkToUses() could
cause live intervals to end at instructions about to be deleted.
This would be a lot simpler if RegisterCoalescer could just erase joined
copies immediately instead of keeping all the to-be-deleted instructions
around.
This fixes PR12862. Unfortunately, bugpoint can't create a sane test
case for this. Like many other coalescer problems, this failure depends
of a very fragile series of events.
<rdar://problem/11474428>
llvm-svn: 157001
When widening an existing <def,reads-undef> operand to a super-register,
it may be necessary to clear the <undef> flag because the wider register
is now read-modify-write through the instruction.
Conversely, it may be necessary to add an <undef> flag when the
coalescer turns a full-register def into a sub-register def, but the
larger register wasn't live before the instruction.
This happens in test/CodeGen/ARM/coalesce-subregs.ll, but the test
is too small for the <undef> flags to affect the generated code.
llvm-svn: 156951
It is now possible to coalesce weird skewed sub-register copies by
picking a super-register class larger than both original registers. The
included test case produces code like this:
vld2.32 {d16, d17, d18, d19}, [r0]!
vst2.32 {d18, d19, d20, d21}, [r0]
We still perform interference checking as if it were a normal full copy
join, so this is still quite conservative. In particular, the f1 and f2
functions in the included test case still have remaining copies because
of false interference.
llvm-svn: 156878
It is possible to coalesce two overlapping registers to a common
super-register that it larger than both of the original registers.
The important difference is that it may be necessary to rewrite DstReg
operands as well as SrcReg operands because the sub-register index has
changed.
This behavior is still disabled by CoalescerPair.
llvm-svn: 156869