This changes the vectorizer to explicitly use the loopsimplify and lcssa utils,
instead of "requiring" the transformations as if they were analyses.
This is not NFC, since it changes the LCSSA behavior - we no longer run LCSSA
for all loops, but rather only for the loops we expect to modify.
Differential Revision: https://reviews.llvm.org/D28868
llvm-svn: 292456
We currently check whether a reduction has a single outside user. We don't
really need to require that - we just need to make sure a single value is
used externally. The number of external users of that value shouldn't actually
matter.
Differential Revision: https://reviews.llvm.org/D28830
llvm-svn: 292424
If a memory instruction will be vectorized, but it's pointer operand is
non-consecutive-like, the instruction is a gather or scatter operation. Its
pointer operand will be non-uniform. This should fix PR31671.
Reference: https://llvm.org/bugs/show_bug.cgi?id=31671
Differential Revision: https://reviews.llvm.org/D28819
llvm-svn: 292254
updated instructions:
pmulld, pmullw, pmulhw, mulsd, mulps, mulpd, divss, divps, divsd, divpd, addpd and subpd.
special optimization case which replaces pmulld with pmullw\pmulhw\pshuf seq.
In case if the real operands bitwidth <= 16.
Differential Revision: https://reviews.llvm.org/D28104
llvm-svn: 291657
arguments much like the CGSCC pass manager.
This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.
An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.
This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.
While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.
I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.
Differential Revision: https://reviews.llvm.org/D28292
llvm-svn: 291651
This patch delays the fix-up step for external induction variable users until
after the dominator tree has been properly updated. This should fix PR30742.
The SCEVExpander in InductionDescriptor::transform can generate code in the
wrong location if the dominator tree is not up-to-date. We should work towards
keeping the dominator tree up-to-date throughout the transformation.
Reference: https://llvm.org/bugs/show_bug.cgi?id=30742
Differential Revision: https://reviews.llvm.org/D28168
llvm-svn: 291462
This code seems to be target dependent which may not be the same for all targets.
Passed the decision whether the given stride is complex or not to the target by sending stride information via SCEV to getAddressComputationCost instead of 'IsComplex'.
Specifically at X86 targets we dont see any significant address computation cost in case of the strided access in general.
Differential Revision: https://reviews.llvm.org/D27518
llvm-svn: 291106
This patch reapplies r289863. The original patch was reverted because it
exposed a bug causing the loop vectorizer to crash in the Python runtime on
PPC. The underlying issue was fixed with r289958.
llvm-svn: 289975
After r288909, instructions feeding predicated instructions may be scalarized
if profitable. Since these instructions will remain scalar, we shouldn't
attempt to type-shrink them. We should only truncate vector types to their
minimal bit widths. This bug was exposed by enabling the vectorization of loops
containing conditional stores by default.
llvm-svn: 289958
stores by default
This uncovers a crasher in the loop vectorizer on PPC when building the
Python runtime. I'll send the testcase to the review thread for the
original commit.
llvm-svn: 289934
This patch sets the default value of the "-enable-cond-stores-vec" command line
option to "true".
Differential Revision: https://reviews.llvm.org/D27814
llvm-svn: 289863
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
We currently check if the exact trip count is known and is smaller than the
"tiny loop" bound. We should be checking the maximum bound on the trip count
instead.
Differential Revision: https://reviews.llvm.org/D27690
llvm-svn: 289583
This patch attempts to scalarize the operand expressions of predicated
instructions if they were conditionally executed in the original loop. After
scalarization, the expressions will be sunk inside the blocks created for the
predicated instructions. The transformation essentially performs
un-if-conversion on the operands.
The cost model has been updated to determine if scalarization is profitable. It
compares the cost of a vectorized instruction, assuming it will be
if-converted, to the cost of the scalarized instruction, assuming that the
instructions corresponding to each vector lane will be sunk inside a predicated
block, possibly avoiding execution. If it's more profitable to scalarize the
entire expression tree feeding the predicated instruction, the expression will
be scalarized; otherwise, it will be vectorized. We only consider the cost of
the entire expression to accurately estimate the cost of the required
insertelement and extractelement instructions.
Differential Revision: https://reviews.llvm.org/D26083
llvm-svn: 288909
The register usage algorithm incorrectly treats instructions whose value is
not used within the loop (e.g. those that do not produce a value).
The algorithm first calculates the usages within the loop. It iterates over
the instructions in order, and records at which instruction index each use
ends (in fact, they're actually recorded against the next index, as this is
when we want to delete them from the open intervals).
The algorithm then iterates over the instructions again, adding each
instruction in turn to a list of open intervals. Instructions are then
removed from the list of open intervals when they occur in the list of uses
ended at the current index.
The problem is, instructions which are not used in the loop are skipped.
However, although they aren't used, the last use of a value may have been
recorded against that instruction index. In this case, the use is not deleted
from the open intervals, which may then bump up the estimated register usage.
This patch fixes the issue by simply moving the "is used" check after the loop
which erases the uses at the current index.
Differential Revision: https://reviews.llvm.org/D26554
llvm-svn: 286969
This is PR28376.
Unfortunately given the current structure of optimization diagnostics we
lack the capability to tell whether the user has
passed -Rpass-analysis=loop-vectorize since this is local to the
front-end (BackendConsumer::OptimizationRemarkHandler).
So rather than printing this even if the user has already
passed -Rpass-analysis, this patch just punts and stops recommending
this option. I don't think that getting this right is worth the
complexity.
Differential Revision: https://reviews.llvm.org/D26563
llvm-svn: 286662
possible pointer-wrap-around concerns, in some cases.
Before this patch, collectConstStridedAccesses (part of interleaved-accesses
analysis) called getPtrStride with [Assume=false, ShouldCheckWrap=true] when
examining all candidate pointers. This is too conservative. Instead, this
patch makes collectConstStridedAccesses use an optimistic approach, calling
getPtrStride with [Assume=true, ShouldCheckWrap=false], and then, once the
candidate interleave groups have been formed, revisits the pointer-wrapping
analysis but only where it matters: namely, in groups that have gaps, and where
the gaps are not at the very end of the group (in which case the loop is
peeled). This second time getPtrStride is called with [Assume=false,
ShouldCheckWrap=true], but this could further be improved to using Assume=true,
once we also add the logic to track that we are not going to meet the scev
runtime checks threshold.
Differential Revision: https://reviews.llvm.org/D25276
llvm-svn: 285517
When we predicate an instruction (div, rem, store) we place the instruction in
its own basic block within the vectorized loop. If a predicated instruction has
scalar operands, it's possible to recursively sink these scalar expressions
into the predicated block so that they might avoid execution. This patch sinks
as much scalar computation as possible into predicated blocks. We previously
were able to sink such operands only if they were extractelement instructions.
Differential Revision: https://reviews.llvm.org/D25632
llvm-svn: 285097
Some instructions from the original loop, when vectorized, can become trivially
dead. This happens because of the way we structure the new loop. For example,
we create new induction variables and induction variable "steps" in the new
loop. Thus, when we go to vectorize the original induction variable update, it
may no longer be needed due to the instructions we've already created. This
patch prevents us from creating these redundant instructions. This reduces code
size before simplification and allows greater flexibility in code generation
since we have fewer unnecessary instruction uses.
Differential Revision: https://reviews.llvm.org/D25631
llvm-svn: 284631
This patch modifies the cost calculation of predicated instructions (div and
rem) to avoid the accumulation of rounding errors due to multiple truncating
integer divisions. The calculation for predicated stores will be addressed in a
follow-on patch since we currently don't scale the cost of predicated stores by
block probability.
Differential Revision: https://reviews.llvm.org/D25333
llvm-svn: 284123
Previously, we marked the branch conditions of latch blocks uniform after
vectorization if they were instructions contained in the loop. However, if a
condition instruction has users other than the branch, it may not remain
uniform. This patch ensures the conditions we mark uniform are only used by the
branch. This should fix PR30627.
Reference: https://llvm.org/bugs/show_bug.cgi?id=30627
llvm-svn: 283563
The vectorizer already holds a pointer to one cost model artifact in a member
variable (i.e., MinBWs). As we add more, it will be easier to communicate these
artifacts to the vectorizer if we simply pass a pointer to the cost model
instead.
llvm-svn: 283373
The vectorizer already holds a pointer to the legality analysis in a member
variable, so it makes sense that we would pass it in the constructor.
llvm-svn: 283368
This patch refactors the cost estimation of scalarized loads and stores to
reuse getScalarizationOverhead for the cost of the extractelement and
insertelement instructions we might create. The existing code accounted for
this cost, but it was functionally equivalent to the helper function.
llvm-svn: 283364
The cost model has to estimate the probability of executing predicated blocks.
However, we currently always assume predicated blocks have a 50% chance of
executing (this value is hardcoded in several places throughout the code).
Since we always use the same value, this patch adds a helper function for
getting this uniform probability. The function simplifies some comments and
makes our assumptions more clear. In the future, we may want to extend this
with actual block probability information if it's available.
llvm-svn: 283354
This patch adds a single helper function for checking if an instruction will be
scalarized with predication. Such instructions include conditional stores and
instructions that may divide by zero. Existing checks have been updated to use
the new function.
llvm-svn: 283350
When building the steps for scalar induction variables, we previously attempted
to determine if all the scalar users of the induction variable were uniform. If
they were, we would only emit the step corresponding to vector lane zero. This
optimization was too aggressive. We generally don't know the entire set of
induction variable users that will be scalar. We have
isScalarAfterVectorization, but this is only a conservative estimate of the
instructions that will be scalarized. Thus, an induction variable may have
scalar users that aren't already known to be scalar. To avoid emitting unused
steps, we can only check that the induction variable is uniform. This should
fix PR30542.
Reference: https://llvm.org/bugs/show_bug.cgi?id=30542
llvm-svn: 282863
(Recommit after making sure IsVerbose gets properly initialized in
DiagnosticInfoOptimizationBase. See previous commit that takes care of
this.)
OptimizationRemarkAnalysis directly takes the role of the report that is
generated by LAA.
Then we need the magic to be able to turn an LAA remark into an LV
remark. This is done via a new OptimizationRemark ctor.
llvm-svn: 282813
OptimizationRemarkAnalysis directly takes the role of the report that is
generated by LAA.
Then we need the magic to be able to turn an LAA remark into an LV
remark. This is done via a new OptimizationRemark ctor.
llvm-svn: 282758
The last one remaining after which emitAnalysis can be removed is when
we convert the LAA's report to a vectorization report. This requires
converting LAA to the new interface first.
llvm-svn: 282726