Like several other loop passes (the vectorizer, etc) this pass doesn't
really fit the model of a loop pass. The critical distinction is that it
isn't intended to be pipelined together with other loop passes. I plan
to add some documentation to the loop pass manager to make this more
clear on that side.
LoopSink is also different because it doesn't really need a lot of the
infrastructure of our loop passes. For example, if there aren't loop
invariant instructions causing a preheader to exist, there is no need to
form a preheader. It also doesn't need LCSSA because this pass is
only involved in sinking invariant instructions from a preheader into
the loop, not reasoning about live-outs.
This allows some nice simplifications to the pass in the new PM where we
can directly walk the loops once without restructuring them.
Differential Revision: https://reviews.llvm.org/D28921
llvm-svn: 292589
Part of the assert has been left active for further debugging.
The other part has been turned into a stat for tracking for the
moment.
llvm-svn: 292583
This can prove that:
extern int f;
int g() {
int x = 0;
for (int i = 0; i < 365; ++i) {
x /= f;
}
return x;
}
always returns zero. Thanks to Sanjoy for confirming this
transformation actually made sense (bugs are mine).
llvm-svn: 292531
Summary:
In case of non-alloca pointers, we check for whether it is a pointer
from malloc-like calls and it is not captured. In such case, we can
promote the pointer, as the caller will have no way to access this pointer
even if there is unwinding in middle of the loop.
Reviewers: hfinkel, sanjoy, reames, eli.friedman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28834
llvm-svn: 292510
Summary: Partial unrolling should have separate threshold with full unrolling.
Reviewers: efriedma, mzolotukhin
Reviewed By: efriedma, mzolotukhin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28831
llvm-svn: 292293
unique exit block if available rather than rolling it ourselves.
This is a little disappointing because that helper doesn't do anything
clever to short-circuit the (surprisingly expensive) computation of all
exit blocks. What's worse is that the way we compute this is hopelessly,
hilariously inefficient. We're literally computing the same information
two different ways and multiple times each way:
- hasDedicatedExits computes the exit block set and then looks at the
predecessors of each
- getExitingBlocks computes the set of loop blocks which have exiting
successors
- getUniqueExitBlock(s) computes the set of non-loop blocks reached from
loop blocks (sound familiar?)
Anyways, at some point we should clean all of this up in the LoopInfo
API, but for now just simplifying the user I'm about to touch.
llvm-svn: 292282
I hope that for any code, it is changed only with good reason and only
when the author knows what they are doing...
There is of course good reason to comment here about the subtlety of the
process, and I've left that comment in tact.
llvm-svn: 292275
instead of members.
No state was being provided by the object so this seems strictly
simpler.
I've also tried to improve the name and comments for the functions to
more thoroughly document what they are doing.
llvm-svn: 292274
that we know has exactly one element when all we are going to do is get
that one element out of it.
Instead, pass around that one element.
There are more simplifications to come in this code...
llvm-svn: 292273
a function's CFG when that CFG is unchanged.
This allows transformation passes to simply claim they preserve the CFG
and analysis passes to check for the CFG being preserved to remove the
fanout of all analyses being listed in all passes.
I've gone through and removed or cleaned up as many of the comments
reminding us to do this as I could.
Differential Revision: https://reviews.llvm.org/D28627
llvm-svn: 292054
Summary:
This is a testcase where phi node cycling happens, and because we do
not order the leaders by domination or anything similar, the leader
keeps changing.
Using std::set for the members is too expensive, and we actually don't
need them sorted all the time, only at leader changes.
We could keep both a set and a vector, and keep them mostly sorted and
resort as necessary, or use a set and a fibheap, but all of this seems
premature.
After running some statistics, we are able to avoid the vast majority
of sorting by keeping a "next leader" field. Most congruence classes only have
leader changes once or twice during GVN.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28594
llvm-svn: 291968
It was always zero. When we move a store from `initial` to its
own congruency class, we end up with a negative store count, which
is obviously wrong.
Also, while here, change StoreCount to be signed so that the assertions
actually fire.
Ack'ed by Daniel Berlin.
llvm-svn: 291725
classes, and updating checking to allow for equivalence through
reachability.
(Sadly, the checking here is not perfect, and can't be made perfect,
so we'll have to disable it after we are satisfied with correctness.
Right now it is just "very unlikely" to happen.)
llvm-svn: 291698
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
llvm-svn: 291662
arguments much like the CGSCC pass manager.
This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.
An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.
This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.
While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.
I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.
Differential Revision: https://reviews.llvm.org/D28292
llvm-svn: 291651
These are interesting again because the user may not be aware that this
is a common reason preventing LICM.
A const is removed from an instruction pointer declaration in order to
pass it to ORE.
Differential Revision: https://reviews.llvm.org/D27940
llvm-svn: 291649
In some cases StructurizeCfg updates root node, but dominator info
remains unchanges, it causes crash when expensive checks are enabled.
To cope with this problem a new method was added to DominatorTreeBase
that allows adding new root nodes, it is called in StructurizeCfg to
put dominator tree in sync.
This change fixes PR27488.
Differential Revision: https://reviews.llvm.org/D28114
llvm-svn: 291530