To enable Flang testing on Windows,
shells scripts have to be ported to Python.
The following changes have been made:
Ported `test_folding.sh` to Python;
Additional changes to the tests themselves
to use the new script.
LIBPGMATH support for testing
not available at this point.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D108217
Allow the lit test suite to run under Windows. This encompasses the following changes:
* Define `lit_tools_dir` for flang's test configuration
* Replace `(<command> || true)` idiom with `not <command>`
* Add `REQUIRES: shell` on tests that invoke a shell script
Reviewed By: awarzynski
Differential Revision: https://reviews.llvm.org/D89368
This patch updates most of the remaining regression tests (~400) to use
`flang-new` rather then `f18` when `FLANG_BUILD_NEW_DRIVER` is set.
This allows us to share more Flang regression tests between `f18` and
`flang-new`. A handful of tests have not been ported yet - these are
currently either failing or not supported by the new driver.
Summary of changes:
* RUN lines in tests are updated to use `%flang_fc1` instead of `%f18`
* option spellings in tests are updated to forms accepted by both `f18` and
`flang-new`
* variables in Bash scripts are renamed (e.g. F18 --> FLANG_FC1)
The updated tests will now be run with the new driver, `flang-new`,
whenever it is enabled (i.e when `FLANG_BUILD_NEW_DRIVER` is set).
Although this patch touches many files, vast majority of the changes are
automatic:
```
grep -IEZlr "%f18" flang/test/ | xargs -0 -l sed -i 's/%f18/%flang_fc1/g
```
Differential Revision: https://reviews.llvm.org/D100309
Constant folding for calls to LBOUND() was not working when the lower bound of
a constant array was not 1.
I fixed this and re-enabled the test in Evaluate/folding16.f90 that previously
was silently failing. I slightly changed the test to parenthesize the first
argument to exercise all of the new code.
Differential Revision: https://reviews.llvm.org/D95894
There were two problems with constant arrays whose lower bound is not 1.
First, when folding the arrays, we were creating the folded array to have lower
bounds of 1 but, we were not re-adjusting their lower bounds to the
declared values. Second, we were not calculating the extents correctly.
Both of these problems led to bogus error messages.
I fixed the first problem by adjusting the lower bounds in
NonPointerInitializationExpr() in Evaluate/check-expression.cpp. I wrote the
class ArrayConstantBoundChanger, which is similar to the existing class
ScalarConstantExpander. In the process of implementing and testing it, I found
a bug that I fixed in ScalarConstantExpander which caused it to infinitely
recurse on parenthesized expressions. I also removed the unrelated class
ScalarExpansionVisitor, which was not used.
I fixed the second problem by changing the formula that calculates upper bounds
in in the function ComputeUpperBound() in Evaluate/shape.cpp.
I added tests that trigger the bogus error messages mentioned above along with
a constant folding tests that uses array operands with shapes that conform but
have different bounds.
In the process of adding tests, I discovered that tests in
Evaluate/folding09.f90 and folding16.f90 were written incorrectly, and I
fixed them. This also revealed a bug in contant folding of the
intrinsic "lbounds" which I plan to fix in a later change.
Differential Revision: https://reviews.llvm.org/D95449
Elemental intrinsic function folding was not taking the lower
bounds of constant array arguments into account; these lower bounds
can be distinct from 1 when named constants appear as arguments.
LLVM bugzilla #48437.
Differential Revision: https://reviews.llvm.org/D93321