Summary:
This patch add a --show-xfail flag. If this flag is specified then each xfail test will be printed to output.
When it is not given xfail tests are ignored. Ignoring xfail tests is the current behavior.
This flag is meant to mirror the --show-unsupported flag that was recently added.
Reviewers: ddunbar, EricWF
Reviewed By: EricWF
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4750
llvm-svn: 214609
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
llvm-svn: 214576
Users keep emailing us about the difficulties of getting LD_LIBRARY_PATH
into their environment, which should be completely unecessary. Try to
strengthen the rpath recommentation by putting in an example cmake
invocation.
Speaking of which, we might want to make CMake the recommended build
system in GettingStarted.html.
llvm-svn: 214565
Before this patch we had
@a = weak global ...
but
@b = alias weak ...
The patch changes aliases to look more like global variables.
Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.
The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.
llvm-svn: 214355
Someone asked about this on IRC the other day, and I couldn't
find the magic prefix documented anywhere.
Differential Revision: http://reviews.llvm.org/D4728
llvm-svn: 214329
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
llvm-svn: 213973
In the process of fixing the noalias parameter -> metadata conversion process
that will take place during inlining (which will be committed soon, but not
turned on by default), I have come to realize that the semantics provided by
yesterday's commit are not really what we want. Here's why:
void foo(noalias a, noalias b, noalias c, bool x) {
*q = x ? a : b;
*c = *q;
}
Generically, we know that *c does not alias with *a and with *b (so there is an
'and' in what we know we're not), and we know that *q might be derived from *a
or from *b (so there is an 'or' in what we know that we are). So we do not want
the semantics currently, where any noalias scope matching any alias.scope
causes a NoAlias return. What we want to know is that the noalias scopes form a
superset of the alias.scope list (meaning that all the things we know we're not
is a superset of all of things the other instruction might be).
Making that change, however, introduces a composibility problem. If we inline
once, adding the noalias metadata, and then inline again adding more, and we
append new scopes onto the noalias and alias.scope lists each time. But, this
means that we could change what was a NoAlias result previously into a MayAlias
result because we appended an additional scope onto one of the alias.scope
lists. So, instead of giving scopes the ability to have parents (which I had
borrowed from the TBAA implementation, but seems increasingly unlikely to be
useful in practice), I've given them domains. The subset/superset condition now
applies within each domain independently, and we only need it to hold in one
domain. Each time we inline, we add the new scopes in a new scope domain, and
everything now composes nicely. In addition, this simplifies the
implementation.
llvm-svn: 213948
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
llvm-svn: 213864
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
llvm-svn: 213670
to globally be controlled. Individual targets (e.g. ExceptionDemo) can
still override this by using LLVM_REQUIRE_RTTI and LLVM_REQUIRE_EH if
they need to be compiled with RTTI or exception handling respectively.
llvm-svn: 213663
- When CMake builds the documentation with sphinx-build it treats
warnings as errors. We should be consistent with what we do in
CMake.
- Having warnings treated as errors will hopefully encourage
developers to write documentation correctly.
llvm-svn: 213661
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
llvm-svn: 213385
This optional dependency on the udis86 library was added some time back to aid
JIT development, but doesn't make much sense to link into LLVM binaries these
days.
llvm-svn: 213300
Convert the operand to int if possible, i.e. if the value is properly
initialized. (I suppose there is further room for improvement here to also
peform the shift if the uninitialized bits are shifted out.)
With this little change we can now compute the scaling factor for compressed
displacement with pure tablegen code in the X86 backend. This is useful
because both the X86-disassembler-specific part of tablegen and the assembler
need this and TD is the natural sharing place.
The patch also adds the missing documentation for the shift and add operator.
llvm-svn: 213277
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.
During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.
Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.
llvm-svn: 213248
Add a `MapVector::remove_if()` that erases items in bulk in linear time,
as opposed to quadratic time for repeated calls to `MapVector::erase()`.
llvm-svn: 213090
Actually update the changed indexes in the map portion of `MapVector`
when erasing from the middle. Add a unit test that checks for this.
Note that `MapVector::erase()` is a linear time operation (it was and
still is). I'll commit a new method in a moment called
`MapVector::remove_if()` that deletes multiple entries in linear time,
which should be slightly less painful.
llvm-svn: 213084
Summary:
Add FileCheck -implicit-check-not option which allows specifying a
pattern that should only occur in the input when explicitly matched by a
positive check. This feature allows checking tool diagnostics in a way
clang -verify does it for compiler diagnostics.
The option has been tested on a number of clang-tidy checks, I'll post a link to
the clang-tidy patch to this thread.
Once there's an agreement on the general direction, I can add tests and
documentation.
Reviewers: djasper, bkramer
Reviewed By: bkramer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4462
llvm-svn: 212810
Clang-cl supports MSVC-style RTTI now, and we can even compile
typeid(...) with /GR-. Just don't instantiate std::function with a
polymorphic type, or bad things will happen.
llvm-svn: 212148
separate MDNode so they can be uniqued via folding set magic. To conserve
space, DIVariable nodes are still variable-length, with the last two
fields being optional.
No functional change.
http://reviews.llvm.org/D3526
llvm-svn: 212050
This new IR facility allows us to represent the object-file semantic of
a COMDAT group.
COMDATs allow us to tie together sections and make the inclusion of one
dependent on another. This is required to implement features like MS
ABI VFTables and optimizing away certain kinds of initialization in C++.
This functionality is only representable in COFF and ELF, Mach-O has no
similar mechanism.
Differential Revision: http://reviews.llvm.org/D4178
llvm-svn: 211920
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
llvm-svn: 211710
After a number of previous small iterations, the functions
llvm_start_multithreaded() and llvm_stop_multithreaded() have
been reduced essentially to no-ops. This change removes them
entirely.
Reviewed by: rnk, dblaikie
Differential Revision: http://reviews.llvm.org/D4216
llvm-svn: 211287
Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
llvm-svn: 211281
This patch removes the LLVM global lock, and updates all existing
users of the global lock to use their own mutex. None of the
existing users of the global lock were protecting code that was
mutually exclusive with any of the other users of the global
lock, so its purpose was not being met.
Reviewed by: rnk
Differential Revision: http://reviews.llvm.org/D4142
llvm-svn: 211277
It makes the types look like they're single-element structures. And
when we have instructions that *do* result in a struct, that can get
confusing rather quickly.
llvm-svn: 210905
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
llvm-svn: 210903
I'm not sure what it means to set a section for a declaration in another
translation unit, but there are some tests in the tree that do it so it seems
to be legal now regardless.
llvm-svn: 210819
The syntax for Global Variables in LangRef is missing the initializer.
This syntax section was added in r199218 along with changes to the
dllexport/dllimport handling, and I guess it was just an oversight to omit the
initializer values. I’ve marked the initializer as optional because this syntax
is used for both declarations and definitions.
llvm-svn: 210808
The armv7-windows-itanium environment is nearly identical to the MSVC ABI. It
has a few divergences, mostly revolving around the use of the Itanium ABI for
C++. VLA support is one of the extensions that are amongst the set of the
extensions.
This adds support for proper VLA emission for this environment. This is
somewhat similar to the handling for __chkstk emission on X86 and the large
stack frame emission for ARM. The invocation style for chkstk is still
controlled via the -mcmodel flag to clang.
Make an explicit note that this is an extension.
llvm-svn: 210489
* Section association cannot use just the section name as many
sections can have the same name. With this patch, the comdat symbol in
an assoc section is interpreted to mean a symbol in the associated
section and the mapping is discovered from it.
* Comdat symbols were not being set correctly. Instead we were getting
whatever was output first for that section.
A consequence is that associative sections now must use .section to
set the association. Using .linkonce would not work since it is not
possible to change a sections comdat symbol (it is used to decide if
we should create a new section or reuse an existing one).
This includes r210298, which was reverted because it was asserting
on an associated section having the same comdat as the associated
section.
llvm-svn: 210367
Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
llvm-svn: 210302
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
llvm-svn: 210280
Late last year r191835 removed a largely unmaintained legacy PGO
infrastructure, but some of the docs were missed. Since these docs are
for things that don't actually exist anymore, they should be removed.
llvm-svn: 210165
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
llvm-svn: 210062
Replace the crufty build-time configure checks for program paths with
equivalent runtime logic.
This lets users install graphing tools as needed without having to reconfigure
and rebuild LLVM, while eliminating a long chain of inappropriate compile
dependencies that included GUI programs and the windowing system.
Additional features:
* Support the OS X 'open' command to view graphs generated by any of the
Graphviz utilities. This is an alternative to the Graphviz OS X UI which is
no longer available on Mountain Lion.
* Produce informative log output upon failure to indicate which programs can
be installed to view graphs.
Ping me if this doesn't work for your particular environment.
llvm-svn: 210001
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
llvm-svn: 209759
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
to have only some of the loop's memory instructions be annotated and still _help_
the loop carried dependence analysis.
This was discussed in the llvmdev ML (topic: "parallel loop metadata question").
llvm-svn: 209507
Some bit-set fields used in ELF file headers in fact contain two parts.
The first one is a regular bit-field. The second one is an enumeraion.
For example ELF header `e_flags` for MIPS target might contain the
following values:
Bit-set values:
EF_MIPS_NOREORDER = 0x00000001
EF_MIPS_PIC = 0x00000002
EF_MIPS_CPIC = 0x00000004
EF_MIPS_ABI2 = 0x00000020
Enumeration:
EF_MIPS_ARCH_32 = 0x50000000
EF_MIPS_ARCH_64 = 0x60000000
EF_MIPS_ARCH_32R2 = 0x70000000
EF_MIPS_ARCH_64R2 = 0x80000000
For printing bit-sets we use the `yaml::IO::bitSetCase()`. It does not
support bit-set/enumeration combinations and prints too many flags from
an enumeration part. This patch fixes this problem. New method
`yaml::IO::maskedBitSetCase()` handle "enumeration" part of bitset
defined by provided mask.
Patch reviewed by Nick Kledzik and Sean Silva.
llvm-svn: 209504
Change --functions option in llvm-symbolizer tool to accept
values "none", "short" or "linkage". Update the tests and docs
accordingly.
llvm-svn: 209050
This allows us to put dynamic initializers for weak data into the same
comdat group as the data being initialized. This is necessary for MSVC
ABI compatibility. Once we have comdats for guard variables, we can use
the combination to help GlobalOpt fire more often for weak data with
guarded initialization on other platforms.
Reviewers: nlewycky
Differential Revision: http://reviews.llvm.org/D3499
llvm-svn: 209015
There are some interesting decisions based on non-obvious rationale in
the ARM64-BE NEON implementation - decent documentation is definitely required.
llvm-svn: 208577
Support for the intrinsics that read from and write to global named registers
is added for r1, r2 and r13 (depending on the subtarget).
llvm-svn: 208509
This reverts commit r200561.
This calling convention was an attempt to match the MSVC C++ ABI for
methods that return structures by value. This solution didn't scale,
because it would have required splitting every CC available on Windows
into two: one for methods and one for free functions.
Now that we can put sret on the second arg (r208453), and Clang does
that (r208458), revert this hack.
llvm-svn: 208459
Visibilities of `hidden` and `protected` are meaningless for symbols
with local linkage.
- Change the assembler to reject non-default visibility on symbols
with local linkage.
- Change the bitcode reader to auto-upgrade `hidden` and `protected`
to `default` when the linkage is local.
- Update LangRef.
<rdar://problem/16141113>
llvm-svn: 208263
Summary:
It concatenates two or more lists. In addition to the !strconcat semantics
the lists must have the same element type.
My overall aim is to make it easy to append to Instruction.Predicates
rather than override it. This can be done by concatenating lists passed as
arguments, or by concatenating lists passed in additional fields.
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D3506
llvm-svn: 208183
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
llvm-svn: 208104
Summary:
* Updated the documentation
* Added a test for >2 arguments
* Added a check for the lexical concatenation
* Made the existing test a bit stricter.
Reviewers: t.p.northover
Reviewed By: t.p.northover
Subscribers: t.p.northover, llvm-commits
Differential Revision: http://reviews.llvm.org/D3485
llvm-svn: 207865
Given the following C code llvm currently generates suboptimal code for
x86-64:
__m128 bss4( const __m128 *ptr, size_t i, size_t j )
{
float f = ptr[i][j];
return (__m128) { f, f, f, f };
}
=================================================
define <4 x float> @_Z4bss4PKDv4_fmm(<4 x float>* nocapture readonly %ptr, i64 %i, i64 %j) #0 {
%a1 = getelementptr inbounds <4 x float>* %ptr, i64 %i
%a2 = load <4 x float>* %a1, align 16, !tbaa !1
%a3 = trunc i64 %j to i32
%a4 = extractelement <4 x float> %a2, i32 %a3
%a5 = insertelement <4 x float> undef, float %a4, i32 0
%a6 = insertelement <4 x float> %a5, float %a4, i32 1
%a7 = insertelement <4 x float> %a6, float %a4, i32 2
%a8 = insertelement <4 x float> %a7, float %a4, i32 3
ret <4 x float> %a8
}
=================================================
shlq $4, %rsi
addq %rdi, %rsi
movslq %edx, %rax
vbroadcastss (%rsi,%rax,4), %xmm0
retq
=================================================
The movslq is uneeded, but is present because of the trunc to i32 and then
sext back to i64 that the backend adds for vbroadcastss.
We can't remove it because it changes the meaning. The IR that clang
generates is already suboptimal. What clang really should emit is:
%a4 = extractelement <4 x float> %a2, i64 %j
This patch makes that legal. A separate patch will teach clang to do it.
Differential Revision: http://reviews.llvm.org/D3519
llvm-svn: 207801
This introduces the stack lowering emission of the stack probe function for
Windows on ARM. The stack on Windows on ARM is a dynamically paged stack where
any page allocation which crosses a page boundary of the following guard page
will cause a page fault. This page fault must be handled by the kernel to
ensure that the page is faulted in. If this does not occur and a write access
any memory beyond that, the page fault will go unserviced, resulting in an
abnormal program termination.
The watermark for the stack probe appears to be at 4080 bytes (for
accommodating the stack guard canaries and stack alignment) when SSP is
enabled. Otherwise, the stack probe is emitted on the page size boundary of
4096 bytes.
llvm-svn: 207615
This is similar to the 'tail' marker, except that it guarantees that
tail call optimization will occur. It also comes with convervative IR
verification rules that ensure that tail call optimization is possible.
Reviewers: nicholas
Differential Revision: http://llvm-reviews.chandlerc.com/D3240
llvm-svn: 207143
The option LLVM_ENABLE_SPHINX option enables the "docs-llvm-html",
"docs-llvm-man" targets but does not build them by default. The
following CMake options have been added that control what targets are
made available
SPHINX_OUTPUT_HTML
SPHINX_OUTPUT_MAN
If LLVM_BUILD_DOCS is enabled then the enabled docs-llvm-* targets will
be built by default and if ``make install`` is run then docs-llvm-html
and docs-llvm-man will be installed (tested on Linux only).
The add_sphinx_target function is in its own file so it can be included
by other projects that use Sphinx for their documentation.
Patch by Daniel Liew <daniel.liew@imperial.ac.uk>!
llvm-svn: 206655
This pass was removed in r184459.
Also added note that the InstCombine pass does library call
simplification.
Patch slightly modified from one by Daniel Liew
<daniel.liew@imperial.ac.uk>!
llvm-svn: 206650
This removes the -segmented-stacks command line flag in favor of a
per-function "split-stack" attribute.
Patch by Luqman Aden and Alex Crichton!
llvm-svn: 205997
:doc:`...` and :ref:`...` links help Sphinx keep track the dependencies
between documents and ensure that they are not pointing to nowhere.
Raw HTML links work just fine and are easier for people less familiar
with reST/Sphinx. They are easy to change over to the :doc:/:ref: style
after the fact so this is not a problem.
This commit doesn't fix all of them.
llvm-svn: 205792
Making the new TableGen documentation official and marking the old file as
"Moved". Also, reverting the original LangRef as the normative formal
description of the language, while keeping the "new" LangRef as LangIntro
for the less inlcined to reading language grammars.
We should remove TableGenFundamentals.rst one day, but for now, just a
warning that it moved will have to do, while we make sure there are no more
links to it from elsewhere.
llvm-svn: 205289
This commit updates the stackmap format to version 1 to indicate the
reorganizaion of several fields. This was done in order to align stackmap
entries to their natural alignment and to minimize padding.
Fixes <rdar://problem/16005902>
llvm-svn: 205254
The non-SJLJ and SJLJ intrinsics are generated by the frontend and
backend respectively.
Differential Revision: http://llvm-reviews.chandlerc.com/D3010
llvm-svn: 205017
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204934
The LangRef warning wasn't formatting the way I intended it to anyway.
Surprisingly inalloca appears to work, even when optimizations are
enabled. We generate very bad code for it, but we can self-host and run
lots of big tests.
llvm-svn: 204888
After some discussion on IRC, emitting a call to the library function seems
like a better default, since it will move from a compiler internal error to
a linker error, that the user can work around until LLVM is fixed.
I'm also adding a note on the responsibility of the user to confirm that
the cache was cleared on platforms where nothing is done.
llvm-svn: 204806
Implementing the LLVM part of the call to __builtin___clear_cache
which translates into an intrinsic @llvm.clear_cache and is lowered
by each target, either to a call to __clear_cache or nothing at all
incase the caches are unified.
Updating LangRef and adding some tests for the implemented architectures.
Other archs will have to implement the method in case this builtin
has to be compiled for it, since the default behaviour is to bail
unimplemented.
A Clang patch is required for the builtin to be lowered into the
llvm intrinsic. This will be done next.
llvm-svn: 204802
This reverts commit r204781.
I will follow up to with msan folks to see what is what they
were trying to do with aliases to weak aliases.
llvm-svn: 204784
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
llvm-svn: 204781
This option caused LowerInvoke to generate code using SJLJ-based
exception handling, but there is no code left that interprets the
jmp_buf stack that the resulting code maintained (llvm.sjljeh.jblist).
This option has been obsolete for a while, and replaced by
SjLjEHPrepare.
This leaves the default behaviour of LowerInvoke, which is to convert
invokes to calls.
Differential Revision: http://llvm-reviews.chandlerc.com/D3136
llvm-svn: 204388
This is mainly a movement of content around to give place to new content
allowing different people to add bits to it in the right place. There is some
new content, but mostly to fill the gaps left by text movement.
I'm dropping the old syntax documentation as it has the problem of being
quickly outdated by changes and largely unnecessary to people not involved
in creating the language, but using it, which is the whole point of the
documentation.
llvm-svn: 204351
This allows us to catch more opportunities for ODR-based type uniquing
during LTO.
Paired commit with CFE which updates some testcases to verify the new
DIBuilder behavior.
llvm-svn: 204106
These linkages were introduced some time ago, but it was never very
clear what exactly their semantics were or what they should be used
for. Some investigation found these uses:
* utf-16 strings in clang.
* non-unnamed_addr strings produced by the sanitizers.
It turns out they were just working around a more fundamental problem.
For some sections a MachO linker needs a symbol in order to split the
section into atoms, and llvm had no idea that was the case. I fixed
that in r201700 and it is now safe to use the private linkage. When
the object ends up in a section that requires symbols, llvm will use a
'l' prefix instead of a 'L' prefix and things just work.
With that, these linkages were already dead, but there was a potential
future user in the objc metadata information. I am still looking at
CGObjcMac.cpp, but at this point I am convinced that linker_private
and linker_private_weak are not what they need.
The objc uses are currently split in
* Regular symbols (no '\01' prefix). LLVM already directly provides
whatever semantics they need.
* Uses of a private name (start with "\01L" or "\01l") and private
linkage. We can drop the "\01L" and "\01l" prefixes as soon as llvm
agrees with clang on L being ok or not for a given section. I have two
patches in code review for this.
* Uses of private name and weak linkage.
The last case is the one that one could think would fit one of these
linkages. That is not the case. The semantics are
* the linker will merge these symbol by *name*.
* the linker will hide them in the final DSO.
Given that the merging is done by name, any of the private (or
internal) linkages would be a bad match. They allow llvm to rename the
symbols, and that is really not what we want. From the llvm point of
view, these objects should really be (linkonce|weak)(_odr)?.
For now, just keeping the "\01l" prefix is probably the best for these
symbols. If we one day want to have a more direct support in llvm,
IMHO what we should add is not a linkage, it is just a hidden_symbol
attribute. It would be applicable to multiple linkages. For example,
on weak it would produce the current behavior we have for objc
metadata. On internal, it would be equivalent to private (and we
should then remove private).
llvm-svn: 203866
As an example that was not actually being used, it suffered from a slow bitrot.
The two main issues with it were that it had no cmake support and
included a copy of the autoconf directory. The reality is that
autoconf is not easily composable. The lack of composabilty is why we
have clang options in llvm's configure. Suggesting that users include
a copy of autoconf/ in their projects seems a bad idea.
We are also in the process of switching to cmake, so pushing autoconf
to new project is probably not what we want.
llvm-svn: 203728
On ELF and COFF an alias is just another name for a position in the file.
There is no way to refer to a position in another file, so an alias to
undefined is meaningless.
MachO currently doesn't support aliases. The spec has a N_INDR, which when
implemented will have a different set of restrictions. Adding support for
it shouldn't be harder than any other IR extension.
For now, having the IR represent what is actually possible with current
tools makes it easier to fix the design of GlobalAlias.
llvm-svn: 203705
The syntax for "cmpxchg" should now look something like:
cmpxchg i32* %addr, i32 42, i32 3 acquire monotonic
where the second ordering argument gives the required semantics in the case
that no exchange takes place. It should be no stronger than the first ordering
constraint and cannot be either "release" or "acq_rel" (since no store will
have taken place).
rdar://problem/15996804
llvm-svn: 203559
The official specifications state the name to be ARMNT (as per the Microsoft
Portable Executable and Common Object Format Specification v8.3).
llvm-svn: 203530
The grammar for LLVM IR is not well specified in any document but seems
to obey the following rules:
- Attributes which have parenthesized arguments are never preceded by
commas. This form of attribute is the only one which ever has
optional arguments. However, not all of these attributes support
optional arguments: 'thread_local' supports an optional argument but
'addrspace' does not. Interestingly, 'addrspace' is documented as
being a "qualifier". What constitutes a qualifier? I cannot find a
definition.
- Some attributes use a space between the keyword and the value.
Examples of this form are 'align' and 'section'. These are always
preceded by a comma.
- Otherwise, the attribute has no argument. These attributes do not
have a preceding comma.
Sometimes an attribute goes before the instruction, between the
instruction and it's type, or after it's type. 'atomicrmw' has
'volatile' between the instruction and the type while 'call' has 'tail'
preceding the instruction.
With all this in mind, it seems most consistent for 'inalloca' on an
'inalloca' instruction to occur before between the instruction and the
type. Unlike the current formulation, there would be no preceding
comma. The combination 'alloca inalloca' doesn't look particularly
appetizing, perhaps a better spelling of 'inalloca' is down the road.
llvm-svn: 203376
The following changes have been applied:
- Removed 'align 4'. We can simplify this away, as it does not provide useful
information in the example.
- Use named instructions instead of '%0'. This is nicer, but more importantly
this makes the IR valid. Before we had two assignments to %0 in a single
example.
- Add a missing branch instruction to make the loop structure clear.
- Move one access into outer.for.body to make it not look that empty.
- The statments that are only in the outer loop body should not reference the
inner loop metadata, but only the outer loop. Only statements in both loops
should reference both surrounding loops.
- Rename the array indexes to make them all independent. Before there were
identical array indexes in the inner and the outer loop. We want to
avoid this special case as it may lead to confusion.
llvm-svn: 202973
The correct name of the type in LLVM assembly is "x86_mmx". Also remove
the reST label "t_x86mmx" because it was unused anyway.
Patch by Manuel Jacob!
Differential Revision: http://llvm-reviews.chandlerc.com/D2955
llvm-svn: 202929
directly care about the Value class (it is templated so that the key can
be any arbitrary Value subclass), it is in fact concretely tied to the
Value class through the ValueHandle's CallbackVH interface which relies
on the key type being some Value subclass to establish the value handle
chain.
Ironically, the unittest is already in the right library.
llvm-svn: 202824