This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
Summary:
I changed various bits of the compilation of atomics recently, and forgot
updating the documentation. This patch just brings it up to date.
Test Plan: no change to the code
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5590
llvm-svn: 218937
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
This format is simply a regular object file with the bitcode stored in a
section named ".llvmbc", plus any number of other (non-allocated) sections.
One immediate use case for this is to accommodate compilation processes
which expect the object file to contain metadata in non-allocated sections,
such as the ".go_export" section used by some Go compilers [1], although I
imagine that in the future we could consider compiling parts of the module
(such as large non-inlinable functions) directly into the object file to
improve LTO efficiency.
[1] http://golang.org/doc/install/gccgo#Imports
Differential Revision: http://reviews.llvm.org/D4371
llvm-svn: 218078
Summary:
They were used in the 'Module Structure' example but weren't otherwise
documented.
Credit to Reed Kotler for noticing.
Reviewers: hans
Reviewed By: hans
Subscribers: hans, llvm-commits
Differential Revision: http://reviews.llvm.org/D5191
llvm-svn: 217583
I've been assuming chain operands were always the first operand,
since the documentation says this. I was confused about why they
were missing after instruction selection. Apparently the convention
changes to using the last operand for MachineSDNodes and I've never
noticed before.
llvm-svn: 216934
Summary:
There is no functionality change here except in the way we assemble and
dump musttail calls in variadic functions. There's really no need to
separate out the bits for musttail and "is forwarding varargs" on call
instructions. A musttail call by definition has to forward the ellipsis
or it would fail verification.
Reviewers: chandlerc, nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4892
llvm-svn: 216423
Somewhat unnoticed in the original implementation of discriminators, but
it could cause instructions to end up in new, small,
DW_TAG_lexical_blocks due to the use of DILexicalBlock to track
discriminator changes.
Instead, use DILexicalBlockFile which we already use to track file
changes without introducing new scopes, so it works well to track
discriminator changes in the same way.
llvm-svn: 216239
Implement `uselistorder` and `uselistorder_bb` assembly directives,
which allow the use-list order to be recovered when round-tripping to
assembly.
This is the bulk of PR20515.
llvm-svn: 216025
I should have included this as part of r215986, which worked around this
corner by changing ArrayRef::equals() not to use std::equal. Alas.
llvm-svn: 215988
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
Summary:
This patch add a --show-xfail flag. If this flag is specified then each xfail test will be printed to output.
When it is not given xfail tests are ignored. Ignoring xfail tests is the current behavior.
This flag is meant to mirror the --show-unsupported flag that was recently added.
Reviewers: ddunbar, EricWF
Reviewed By: EricWF
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4750
llvm-svn: 214609
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
llvm-svn: 214576
Users keep emailing us about the difficulties of getting LD_LIBRARY_PATH
into their environment, which should be completely unecessary. Try to
strengthen the rpath recommentation by putting in an example cmake
invocation.
Speaking of which, we might want to make CMake the recommended build
system in GettingStarted.html.
llvm-svn: 214565
Before this patch we had
@a = weak global ...
but
@b = alias weak ...
The patch changes aliases to look more like global variables.
Looking at some really old code suggests that the reason was that the old
bison based parser had a reduction for alias linkages and another one for
global variable linkages. Putting the alias first avoided the reduce/reduce
conflict.
The days of the old .ll parser are long gone. The new one parses just "linkage"
and a later check is responsible for deciding if a linkage is valid in a
given context.
llvm-svn: 214355
Someone asked about this on IRC the other day, and I couldn't
find the magic prefix documented anywhere.
Differential Revision: http://reviews.llvm.org/D4728
llvm-svn: 214329
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
llvm-svn: 213973
In the process of fixing the noalias parameter -> metadata conversion process
that will take place during inlining (which will be committed soon, but not
turned on by default), I have come to realize that the semantics provided by
yesterday's commit are not really what we want. Here's why:
void foo(noalias a, noalias b, noalias c, bool x) {
*q = x ? a : b;
*c = *q;
}
Generically, we know that *c does not alias with *a and with *b (so there is an
'and' in what we know we're not), and we know that *q might be derived from *a
or from *b (so there is an 'or' in what we know that we are). So we do not want
the semantics currently, where any noalias scope matching any alias.scope
causes a NoAlias return. What we want to know is that the noalias scopes form a
superset of the alias.scope list (meaning that all the things we know we're not
is a superset of all of things the other instruction might be).
Making that change, however, introduces a composibility problem. If we inline
once, adding the noalias metadata, and then inline again adding more, and we
append new scopes onto the noalias and alias.scope lists each time. But, this
means that we could change what was a NoAlias result previously into a MayAlias
result because we appended an additional scope onto one of the alias.scope
lists. So, instead of giving scopes the ability to have parents (which I had
borrowed from the TBAA implementation, but seems increasingly unlikely to be
useful in practice), I've given them domains. The subset/superset condition now
applies within each domain independently, and we only need it to hold in one
domain. Each time we inline, we add the new scopes in a new scope domain, and
everything now composes nicely. In addition, this simplifies the
implementation.
llvm-svn: 213948
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
llvm-svn: 213864
We previously supported the align attribute on all (pointer) parameters, but we
only used it for byval parameters. However, it is completely consistent at the
IR level to treat 'align n' on all pointer parameters as an alignment
assumption on the pointer, and now we wll. Specifically, this causes
computeKnownBits to use the align attribute on all pointer parameters, not just
byval parameters. I've also added an explicit parameter attribute test for this
to test/Bitcode/attributes.ll.
And I've updated the LangRef to document the align parameter attribute (as it
turns out, it was not documented at all previously, although the byval
documentation mentioned that it could be used).
There are (at least) two benefits to doing this:
- It allows enhancing alignment based on the pointer alignment after inlining callees.
- It allows simplification of pointer arithmetic.
llvm-svn: 213670
to globally be controlled. Individual targets (e.g. ExceptionDemo) can
still override this by using LLVM_REQUIRE_RTTI and LLVM_REQUIRE_EH if
they need to be compiled with RTTI or exception handling respectively.
llvm-svn: 213663
- When CMake builds the documentation with sphinx-build it treats
warnings as errors. We should be consistent with what we do in
CMake.
- Having warnings treated as errors will hopefully encourage
developers to write documentation correctly.
llvm-svn: 213661
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
llvm-svn: 213385
This optional dependency on the udis86 library was added some time back to aid
JIT development, but doesn't make much sense to link into LLVM binaries these
days.
llvm-svn: 213300
Convert the operand to int if possible, i.e. if the value is properly
initialized. (I suppose there is further room for improvement here to also
peform the shift if the uninitialized bits are shifted out.)
With this little change we can now compute the scaling factor for compressed
displacement with pure tablegen code in the X86 backend. This is useful
because both the X86-disassembler-specific part of tablegen and the assembler
need this and TD is the natural sharing place.
The patch also adds the missing documentation for the shift and add operator.
llvm-svn: 213277
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.
During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.
Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.
llvm-svn: 213248
Add a `MapVector::remove_if()` that erases items in bulk in linear time,
as opposed to quadratic time for repeated calls to `MapVector::erase()`.
llvm-svn: 213090
Actually update the changed indexes in the map portion of `MapVector`
when erasing from the middle. Add a unit test that checks for this.
Note that `MapVector::erase()` is a linear time operation (it was and
still is). I'll commit a new method in a moment called
`MapVector::remove_if()` that deletes multiple entries in linear time,
which should be slightly less painful.
llvm-svn: 213084
Summary:
Add FileCheck -implicit-check-not option which allows specifying a
pattern that should only occur in the input when explicitly matched by a
positive check. This feature allows checking tool diagnostics in a way
clang -verify does it for compiler diagnostics.
The option has been tested on a number of clang-tidy checks, I'll post a link to
the clang-tidy patch to this thread.
Once there's an agreement on the general direction, I can add tests and
documentation.
Reviewers: djasper, bkramer
Reviewed By: bkramer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4462
llvm-svn: 212810
Clang-cl supports MSVC-style RTTI now, and we can even compile
typeid(...) with /GR-. Just don't instantiate std::function with a
polymorphic type, or bad things will happen.
llvm-svn: 212148
separate MDNode so they can be uniqued via folding set magic. To conserve
space, DIVariable nodes are still variable-length, with the last two
fields being optional.
No functional change.
http://reviews.llvm.org/D3526
llvm-svn: 212050
This new IR facility allows us to represent the object-file semantic of
a COMDAT group.
COMDATs allow us to tie together sections and make the inclusion of one
dependent on another. This is required to implement features like MS
ABI VFTables and optimizing away certain kinds of initialization in C++.
This functionality is only representable in COFF and ELF, Mach-O has no
similar mechanism.
Differential Revision: http://reviews.llvm.org/D4178
llvm-svn: 211920
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
llvm-svn: 211710
After a number of previous small iterations, the functions
llvm_start_multithreaded() and llvm_stop_multithreaded() have
been reduced essentially to no-ops. This change removes them
entirely.
Reviewed by: rnk, dblaikie
Differential Revision: http://reviews.llvm.org/D4216
llvm-svn: 211287
Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
llvm-svn: 211281
This patch removes the LLVM global lock, and updates all existing
users of the global lock to use their own mutex. None of the
existing users of the global lock were protecting code that was
mutually exclusive with any of the other users of the global
lock, so its purpose was not being met.
Reviewed by: rnk
Differential Revision: http://reviews.llvm.org/D4142
llvm-svn: 211277
It makes the types look like they're single-element structures. And
when we have instructions that *do* result in a struct, that can get
confusing rather quickly.
llvm-svn: 210905
This commit adds a weak variant of the cmpxchg operation, as described
in C++11. A cmpxchg instruction with this modifier is permitted to
fail to store, even if the comparison indicated it should.
As a result, cmpxchg instructions must return a flag indicating
success in addition to their original iN value loaded. Thus, for
uniformity *all* cmpxchg instructions now return "{ iN, i1 }". The
second flag is 1 when the store succeeded.
At the DAG level, a new ATOMIC_CMP_SWAP_WITH_SUCCESS node has been
added as the natural representation for the new cmpxchg instructions.
It is a strong cmpxchg.
By default this gets Expanded to the existing ATOMIC_CMP_SWAP during
Legalization, so existing backends should see no change in behaviour.
If they wish to deal with the enhanced node instead, they can call
setOperationAction on it. Beware: as a node with 2 results, it cannot
be selected from TableGen.
Currently, no use is made of the extra information provided in this
patch. Test updates are almost entirely adapting the input IR to the
new scheme.
Summary for out of tree users:
------------------------------
+ Legacy Bitcode files are upgraded during read.
+ Legacy assembly IR files will be invalid.
+ Front-ends must adapt to different type for "cmpxchg".
+ Backends should be unaffected by default.
llvm-svn: 210903
I'm not sure what it means to set a section for a declaration in another
translation unit, but there are some tests in the tree that do it so it seems
to be legal now regardless.
llvm-svn: 210819
The syntax for Global Variables in LangRef is missing the initializer.
This syntax section was added in r199218 along with changes to the
dllexport/dllimport handling, and I guess it was just an oversight to omit the
initializer values. I’ve marked the initializer as optional because this syntax
is used for both declarations and definitions.
llvm-svn: 210808
The armv7-windows-itanium environment is nearly identical to the MSVC ABI. It
has a few divergences, mostly revolving around the use of the Itanium ABI for
C++. VLA support is one of the extensions that are amongst the set of the
extensions.
This adds support for proper VLA emission for this environment. This is
somewhat similar to the handling for __chkstk emission on X86 and the large
stack frame emission for ARM. The invocation style for chkstk is still
controlled via the -mcmodel flag to clang.
Make an explicit note that this is an extension.
llvm-svn: 210489
* Section association cannot use just the section name as many
sections can have the same name. With this patch, the comdat symbol in
an assoc section is interpreted to mean a symbol in the associated
section and the mapping is discovered from it.
* Comdat symbols were not being set correctly. Instead we were getting
whatever was output first for that section.
A consequence is that associative sections now must use .section to
set the association. Using .linkonce would not work since it is not
possible to change a sections comdat symbol (it is used to decide if
we should create a new section or reuse an existing one).
This includes r210298, which was reverted because it was asserting
on an associated section having the same comdat as the associated
section.
llvm-svn: 210367
Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
llvm-svn: 210302
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
llvm-svn: 210280
Late last year r191835 removed a largely unmaintained legacy PGO
infrastructure, but some of the docs were missed. Since these docs are
for things that don't actually exist anymore, they should be removed.
llvm-svn: 210165
This patch changes GlobalAlias to point to an arbitrary ConstantExpr and it is
up to MC (or the system assembler) to decide if that expression is valid or not.
This reduces our ability to diagnose invalid uses and how early we can spot
them, but it also lets us do things like
@test5 = alias inttoptr(i32 sub (i32 ptrtoint (i32* @test2 to i32),
i32 ptrtoint (i32* @bar to i32)) to i32*)
An important implication of this patch is that the notion of aliased global
doesn't exist any more. The alias has to encode the information needed to
access it in its metadata (linkage, visibility, type, etc).
Another consequence to notice is that getSection has to return a "const char *".
It could return a NullTerminatedStringRef if there was such a thing, but when
that was proposed the decision was to just uses "const char*" for that.
llvm-svn: 210062
Replace the crufty build-time configure checks for program paths with
equivalent runtime logic.
This lets users install graphing tools as needed without having to reconfigure
and rebuild LLVM, while eliminating a long chain of inappropriate compile
dependencies that included GUI programs and the windowing system.
Additional features:
* Support the OS X 'open' command to view graphs generated by any of the
Graphviz utilities. This is an alternative to the Graphviz OS X UI which is
no longer available on Mountain Lion.
* Produce informative log output upon failure to indicate which programs can
be installed to view graphs.
Ping me if this doesn't work for your particular environment.
llvm-svn: 210001
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
llvm-svn: 209759