It will still return an iterator that points to the first terminator or end(),
but there may be DBG_VALUE instructions following the first terminator.
llvm-svn: 123384
Print virtual registers numbered from 0 instead of the arbitrary
FirstVirtualRegister. The first virtual register is printed as %vreg0.
TRI::NoRegister is printed as %noreg.
llvm-svn: 123107
ScheduleDAGEmit, TwoAddressLowering, and PHIElimination.
This switches the bulk of register copies to using COPY, but many less used
copyRegToReg calls remain.
llvm-svn: 108050
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
llvm-svn: 106243
Previously, LiveIntervalAnalysis would infer phi joins by looking for multiply
defined registers. That doesn't work if the phi join is implicitly defined in
all but one of the predecessors.
llvm-svn: 96994
into TargetOpcodes.h. #include the new TargetOpcodes.h
into MachineInstr. Add new inline accessors (like isPHI())
to MachineInstr, and start using them throughout the
codebase.
llvm-svn: 95687
non-landing pad basic block as the successor to a block that ends in an
unconditional jump will cause block folding to remove the added block as a
successor. Thus eventually removing it AND the landing pad entirely. Critical
edge splitting is an optimization, so we can safely turn it off when dealing
with landing pads.
llvm-svn: 91634
Tail duplication produces lots of identical phi nodes in different basic
blocks. Teach PHIElimination to reuse the join registers when lowering a phi
node that is identical to an already lowered node. This saves virtual
registers, and more importantly it avoids creating copies the the coalescer
doesn't know how to eliminate.
Teach LiveIntervalAnalysis about the phi joins with multiple uses.
This patch significantly reduces code size produced by -pre-regalloc-taildup.
llvm-svn: 91549
We want LiveVariables clients to use methods rather than accessing the
getVarInfo data structure directly. That way it will be possible to change the
LiveVariables representation.
llvm-svn: 90240
When splitting a critical edge, the registers live through the edge are:
- Used in a PHI instruction, or
- Live out from the predecessor, and
- Live in to the successor.
This allows the coalescer to eliminate even more phi joins.
llvm-svn: 89530
critical edges in PHIElimination.
This has a huge impact on regalloc performance, and we recover almost all of
the 10% compile time regression that edge splitting introduced.
llvm-svn: 89381
when LiveVariables is available.
The -split-phi-edges is now gone, and so is the hack to disable it when using
the local register allocator. The PHIElimination pass no longer has
LiveVariables as a prerequisite - that is what broke the local allocator.
Instead we do critical edge splitting when possible - that is when
LiveVariables is available.
llvm-svn: 89213
The local register allocator doesn't like it when LiveVariables is run.
We should also disable edge splitting under -O0, but that has to wait a bit.
llvm-svn: 89125
When splitting an edge after a machine basic block with fall-through, we
forgot to insert a jump instruction. Fix this by calling updateTerminator() on
the fall-through block when relevant.
Also be more precise in PHIElimination::isLiveIn.
llvm-svn: 88728
The BasicBlock associated with a MachineBasicBlock does not necessarily
correspond to the code in the MBB.
Don't insert a new IR BasicBlock when splitting critical edges. We are not
supposed to modify the IR during codegen, and we should be able to do just
fine with a NULL BB.
llvm-svn: 88707
- Edges are split before any phis are eliminated, so the code is SSA.
- Create a proper IR BasicBlock for the split edges.
- LiveVariables::addNewBlock now has same syntax as
MachineDominatorTree::addNewBlock. Algorithm calculates predecessor live-out
set rather than successor live-in set.
This feature still causes some miscompilations.
llvm-svn: 86867
Critical edges leading to a PHI node are split when the PHI source variable is
live out from the predecessor block. This help the coalescer eliminate more
PHI joins.
llvm-svn: 86725
previous cmp; a copy can not be inserted here if the copy insn also has
side effects. We don't have access to the attributes of copy insn here;
so just play safe by finding a safe locations for branch terminators.
llvm-svn: 74898
entries as there are basic blocks in the function. LiveVariables::getVarInfo
creates a VarInfo struct for every register in the function, leading to
quadratic space use. This patch changes the BitVector to a SparseBitVector,
which doesn't help the worst-case memory use but does reduce the actual use in
very long functions with short-lived variables.
llvm-svn: 72426
U test/CodeGen/X86/2009-03-13-PHIElimBug.ll
D test/CodeGen/X86/2009-03-16-PHIElimInLPad.ll
U lib/CodeGen/PHIElimination.cpp
r67049 was causing this failure:
Running /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/test/CodeGen/X86/dg.exp ...
FAIL: /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/test/CodeGen/X86/2009-03-13-PHIElimBug.ll for PR3784
Failed with exit(1) at line 1
while running: llvm-as < /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.src/test/CodeGen/X86/2009-03-13-PHIElimBug.ll | llc -march=x86 | /usr/bin/grep -A 2 {call f} | /usr/bin/grep movl
child process exited abnormally
llvm-svn: 67051
how invokes are set up. The fix could be disturbed by
register copies coming after the EH_LABEL, and also didn't
behave quite right when it was the invoke result that
was used in a phi node. Also (see new testcase) fix
another phi elimination bug while there: register copies
in the landing pad need to come after the EH_LABEL, because
that's where execution branches to when unwinding. If they
come before the EH_LABEL then they will never be executed...
Also tweak the original testcase so it doesn't use a no-longer
existing counter.
The accumulated phi elimination changes fix two of seven Ada
testsuite failures that turned up after landing pad critical
edge splitting was turned off. So there's probably more to come.
llvm-svn: 67049
MachineMemOperands. The pools are owned by MachineFunctions.
This drastically reduces the number of calls to malloc/free made
during the "Emit" phase of scheduling, as well as later phases
in CodeGen. Combined with other changes, this speeds up the
"instruction selection" phase of CodeGen by 10% in some cases.
llvm-svn: 53212
address of the PassInfo directly instead of calling getPassInfo.
This eliminates a bunch of dynamic initializations of static data.
Also, fold RegisterPassBase into PassInfo, make a bunch of its
data members const, and rearrange some code to initialize data
members in constructors instead of using setter member functions.
llvm-svn: 51022
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
llvm-svn: 45467
e.g. MO.isMBB() instead of MO.isMachineBasicBlock(). I don't plan on
switching everything over, so new clients should just start using the
shorter names.
Remove old long accessors, switching everything over to use the short
accessor: getMachineBasicBlock() -> getMBB(),
getConstantPoolIndex() -> getIndex(), setMachineBasicBlock -> setMBB(), etc.
llvm-svn: 45464