There is a bug reported at https://bugs.llvm.org/show_bug.cgi?id=48938
After looking through the glibc, I found the `atexit(f)` is the same as `__cxa_atexit(f, NULL, NULL)`. In orc runtime, we identify different JITDylib by their dso_handle value, so that a NULL dso_handle is invalid. So in this patch, I added a `PlatformJDDSOHandle` to ELFNixRuntimeState, and functions which are registered by atexit will be registered at PlatformJD.
Reviewed By: lhames
Differential Revision: https://reviews.llvm.org/D111413
The current code checks whether the vector's element type is a valid structure element type, rather than a valid vector element type. The two have separate implementations and but only accept very slightly different sets of types, which is probably why this wasn't caught before.
Differential Revision: https://reviews.llvm.org/D109655
CodeGenFunction::InitTempAlloca() inits the static alloca within the
entry block which may *not* necessarily be correct always.
For example, the current instruction insertion point (pointed by the
instruction builder) could be a program point which is hit multiple
times during the program execution, and it is expected that the static
alloca is initialized every time the program point is hit.
Hence remove CodeGenFunction::InitTempAlloca(), and initialize the
static alloca where the instruction insertion point is at the moment.
This patch, as a starting attempt, removes the calls to
CodeGenFunction::InitTempAlloca() which do not have any side effect on
the lit tests.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D111293
Commit 573531fb1f fixed the colon at the
end of a CHECK line (was a semicolon by mistake). With the check
enabled, it turned out that it was failing. Check for the correct
content.
Also add the missing colon to the next CHECK line.
This test is crashing 9 out of 10 runs in CI, but I can't reproduce
locally right now. Disabling to get the CI back to green and avoid
backsliding with more ASAN issues that would go unnoticed.
In this case, we know statically that we're destroying the most-derived
class, so the vptr must already point to the current class and never
needs to be updated.
fae0dfa implemented the new __ibm128 type, this patch enables its
complex form.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D109948
Currently, there're multiple float types that can be represented by
__attribute__((mode(xx))). It's parsed, and then a corresponding type is
created if available.
This refactor moves the enum for mode into a global enum class visible
to ASTContext.
Reviewed By: aaron.ballman, erichkeane
Differential Revision: https://reviews.llvm.org/D111391
This patch adds support for the
`__kmpc_get_hardware_num_threads_in_block` function that returns the
number of threads. This was missing in the new runtime and was used by
the AMDGPU plugin which prevented it from using the new runtime. This
patchs also unified the interface for getting the thread numbers in the
frontend.
Originally authored by jdoerfert.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D111475
566690b0 uses size information in float semantics, but PPCDoubleDouble
left them empty.
As follow-up, we can consider remove PPCDoubleDoubleLegacy and fill
other fields in the future.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D111398
Until we hit the first barrier we should not call `mapping::isSPMDMode`
with all threads. Instead, we now have (and use during initialization) a
`mapping::isMainThreadInGenericMode` overload that takes the known
SPMD-mode state and one that queries it.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D111381
When the option -polly-loopfusion-greedy is set, the ScheduleOptimizer
tries to aggressively fuse any band it can and does not violate any
dependences.
As part if the implementation, the functionalty for copying a band
into an new schedule was extracted out of the ScheduleTreeRewriter.
We have a string litteral (via CPP) used to construct `StringRef`, which
is used to construct a `SmallString`. Just construct the latter
directly.
Differential Revision: https://reviews.llvm.org/D111322
There are functions where we do not want function instrumentation which is why we have `__attribute__((no_instrument_function))`. Extending this functionality to disable instrumentation for Objective-C methods as well. Objective C methods like `+load` run premain and having instrumentation on them causes runtime errors depending on the implementation of `__cyg_profile_func_enter` etc. functions
Reviewed By: rjmccall, aaron.ballman
Differential Revision: https://reviews.llvm.org/D111286
Implement parts of P1614, including three-way comparison for tuples, and expand testing.
Reviewed By: ldionne, Mordante, #libc
Differential Revision: https://reviews.llvm.org/D108250
llvm.is.constant* intrinsics are evaluated to 0 or 1 integral values.
A common use case for llvm.is.constant comes from the higher level
__builtin_constant_p. A common usage pattern of __builtin_constant_p in
the Linux kernel is:
void foo (int bar) {
if (__builtin_constant_p(bar)) {
// lots of code that will fold away to a constant.
} else {
// a little bit of code, usually a libcall.
}
}
A minor issue in InlineCost calculations is when `bar` is _not_ Constant
and still will not be after inlining, we don't discount the true branch
and the inline cost of `foo` ends up being the cost of both branches
together, rather than just the false branch.
This leads to code like the above where inlining will not help prove bar
Constant, but it still would be beneficial to inline foo, because the
"true" branch is irrelevant from a cost perspective.
For example, IPSCCP can sink a passed constant argument to foo:
const int x = 42;
void bar (void) { foo(x); }
This improves our inlining decisions, and fixes a few head scratching
cases were the disassembly shows a relatively small `foo` not inlined
into a lone caller.
We could further improve this modeling by tracking whether the argument
to llvm.is.constant* is a parameter of the function, and if inlining
would allow that parameter to become Constant. This idea is noted in a
FIXME comment.
Link: https://github.com/ClangBuiltLinux/linux/issues/1302
Reviewed By: kazu
Differential Revision: https://reviews.llvm.org/D111272
This moves the registry higher in the LLVM library dependency stack.
Every client of the target registry needs to link against MC anyway to
actually use the target, so we might as well move this out of Support.
This allows us to ensure that Support doesn't have includes from MC/*.
Differential Revision: https://reviews.llvm.org/D111454
Unfortunately I've not found a way to exercise this code that doesn't
crash elsewhere yet, due to unrelated bugs in how Sema incorrectly
instantiates lambdas in function template signatures.
PR45875 notes an instance where exception handling crashes on aarch64-fuchsia
where SCS is enabled by default. The underlying issue seems to be that within libunwind,
various _Unwind_* functions, the x18 register is not updated if a function is marked
with nounwind. This removes the check for nounwind and emits the CFI instruction that updates x18.
Differential Revision: https://reviews.llvm.org/D79822
If a loop is flattened, the inner loop is removed and the LPM
should be informed of this fact, so it can invalidate associated
analyses. To support this, we relax an assertion in LPMUpdater to
allow invalidating non-top-level loops when running in LoopNestMode,
as the pass does not know how exactly it will get scheduled.
Differential Revision: https://reviews.llvm.org/D111350
Instead of hard-coding results for both Intel and AMD, let's relax
the checks to simplify the test while supporting both implementations.
Note that:
- If a new hardware implementation comes up in the future, it is likely
to pass the relaxed tests, i.e. no future maintenance burden for us.
- If something terribly wrong happens (e.g. instead of rsqrt we
execute 1/sqrt), the tests will probably catch it, since the relaxed
tests expect low precision (e.g. rsqrt(1) != 1.0).
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D111461
Distinct lambda expressions are always considered non-equivalent, so two
token-for-token identical function declarations whose signatures involve
lambda-expressions declare distinct functions.
This reverts commit dfd74db981.
SimpleRemoteEPC should share dispatch with the ExecutionSession, rather than
having two different dispatch systems on the controller side.
SimpleRemoteEPCServer::Dispatch doesn't need to be shared.
This patch updates the vec_extract builtins to take a signed int as the second
parameter, as defined by the Power Vector Intrinsics Programming Reference.
This patch is NFC and all existing tests pass.
Differential Revision: https://reviews.llvm.org/D110935