Apart from the argument registers, set the CostPerUse
value as per the ratio reg_index/allocation_granularity.
It is a pre-commit for introducing the scratch registers
in the ABI. This change should help in a balanced
register allocation.
Differential Revision: https://reviews.llvm.org/D76417
Add the scratch wave offset to the scratch buffer descriptor (SRSrc) in
the entry function prologue. This allows us to removes the scratch wave
offset register from the calling convention ABI.
As part of this change, allow the use of an inline constant zero for the
SOffset of MUBUF instructions accessing the stack in entry functions
when a frame pointer is not requested/required. Entry functions with
calls still need to set up the calling convention ABI stack pointer
register, and reference it in order to address arguments of called
functions. The ABI stack pointer register remains unswizzled, but is now
wave-relative instead of queue-relative.
Non-entry functions also use an inline constant zero SOffset for
wave-relative scratch access, but continue to use the stack and frame
pointers as before. When the stack or frame pointer is converted to a
swizzled offset it is now scaled directly, as the scratch wave offset no
longer needs to be subtracted first.
Update llvm/docs/AMDGPUUsage.rst to reflect these changes to the calling
convention.
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75138
Before 2018, mesa used to use byval interchangably with inreg, which
didn't really make sense. Fix tests still using it to avoid breaking
in a future commit.
llvm-svn: 365953
This feature is only relevant to shaders, and is no longer used. When disabled,
lowering of reserved registers for shaders causes a compiler crash.
Remove the feature and add a test for compilation of shaders at OptNone.
Differential Revision: https://reviews.llvm.org/D53829
llvm-svn: 345763
Two issues found when doing codegen for splitting vector with non-zero alloca addr space:
DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT/SplitVecOp_EXTRACT_VECTOR_ELT uses dummy pointer info for creating
SDStore. Since one pointer operand contains multiply and add, InferPointerInfo is unable to
infer the correct pointer info, which ends up with a dummy pointer info for the target to lower
store and results in isel failure. The fix is to introduce MachinePointerInfo::getUnknownStack to
represent MachinePointerInfo which is known in alloca address space but without other information.
TargetLowering::getVectorElementPointer uses value type of pointer in addr space 0 for
multiplication of index and then add it to the pointer. However the pointer may be in an addr
space which has different size than addr space 0. The fix is to use the pointer value type for
index multiplication.
Differential Revision: https://reviews.llvm.org/D39758
llvm-svn: 319622
Introduce pseudo-registers for registers needed for stack
access, which are replaced during finalizeLowering.
Note these pseudo-registers are currently only used for the
used register location, and not for determining their
input argument register.
This is better because it avoids the need to try to predict
whether a call will be emitted from the IR, and also
detects stack objects introduced by legalization.
Test changes are from the HasStackObjects check being more
accurate since stack objects introduced during legalization
are now known.
llvm-svn: 308325
This allows us to ensure that 0 is never a valid pointer
to a user object, and ensures that the offset is always legal
without needing a register to access it. This comes at the cost
of usable offsets and wasted stack space.
llvm-svn: 295877
This patch reverts region's scheduling to the original untouched state
in case if we have have decreased occupancy.
In addition it switches to use TargetRegisterInfo occupancy callback
for pressure limits instead of gradually increasing limits which were
just passed by. We are going to stay with the best schedule so we do
not need to tolerate worsened scheduling anymore.
Differential Revision: https://reviews.llvm.org/D29971
llvm-svn: 295206
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
llvm-svn: 289402
The size and offset were wrong. The size of the object was
being used for the size of the access, when here it is really
being split into 4-byte accesses. The underlying object size
is set in the MachinePointerInfo, which also didn't have the
offset set.
llvm-svn: 287806
Retrying after upstream changes.
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and
merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 284151
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill
behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, nhaehnle, jyknight
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 282600
Summary:
Mesa and other users must set this to enable coalescing:
- STRIDE = 0
- SWIZZLE_ENABLE = 1
This makes one particular compute shader 8x faster.
Reviewers: tstellarAMD, arsenm
Subscribers: arsenm, kzhuravl
Differential Revision: http://reviews.llvm.org/D21136
llvm-svn: 272556
Allocating larger register classes first should give better allocation
results (and more importantly for myself, make the lit tests more stable
with respect to scheduler changes).
Patch by Matthias Braun
llvm-svn: 270312
Summary:
This includes a hazard recognizer implementation to replace some of
the hazard handling we had during frame index elimination.
Reviewers: arsenm
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18602
llvm-svn: 268143
Summary:
The goal is for each operand type to have its own parse function and
at the same time share common code for tracking state as different
instruction types share operand types (e.g. glc/glc_flat, etc).
Introduce parseAMDGPUOperand which can parse any optional operand.
DPP and Clamp/OMod have custom handling for now. Sam also suggested
to have class hierarchy for operand types instead of table. This
can be done in separate change.
Remove parseVOP3OptionalOps, parseDS*OptionalOps, parseFlatOptionalOps,
parseMubufOptionalOps, parseDPPOptionalOps.
Reduce number of definitions of AsmOperand's and MatchClasses' by using common base class.
Rename AsmMatcher/InstPrinter methods accordingly.
Print immediate type when printing parsed immediate operand.
Use 'off' if offset/index register is unused instead of skipping it to make it more readable (also agreed with SP3).
Update tests.
Reviewers: tstellarAMD, SamWot, artem.tamazov
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19584
llvm-svn: 268015
Summary:
The code previously always used s1 as it was using the user + system SGPR
information for compute kernels. This is incorrect for Mesa shaders though,
The register should be the next SGPR after all user and system SGPR's.
We use that Mesa adds arguments for all input and system SGPR's and
take the next available SGPR for the scratch wave offset register.
Signed-off-by: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Reviewers: mareko, arsenm, nhaehnle, tstellarAMD
Subscribers: qcolombet, arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18941
Patch By: Bas Nieuwenhuizen
llvm-svn: 266336
This makes it possible to distinguish between mesa shaders
and other kernels even in the presence of compute shaders.
Patch By: Bas Nieuwenhuizen <bas@basnieuwenhuizen.nl>
Differential Revision: http://reviews.llvm.org/D18559
llvm-svn: 265589
Tests for the new scalarize all private access options will be
included with a future commit.
The only functional change is to make the split/scalarize behavior
for private access of > 4 element vectors to be consistent
with the flat/global handling. This makes the spilling worse
in the two changed tests.
llvm-svn: 260804
Introduce a subtarget feature for this, and leave the default with
the current behavior which assumes up to 16-byte loads/stores can
be used. The field also seems to have the ability to be set to 2 bytes,
but I'm not sure what that would be used for.
llvm-svn: 260651
If we know we have stack objects, we reserve the registers
that the private buffer resource and wave offset are passed
and use them directly.
If not, reserve the last 5 SGPRs just in case we need to spill.
After register allocation, try to pick the next available registers
instead of the last SGPRs, and then insert copies from the inputs
to the reserved registers in the progloue.
This also only selectively enables all of the input registers
which are really required instead of always enabling them.
llvm-svn: 254331
It does not work because of emergency stack slots.
This pass was supposed to eliminate dummy registers for the
spill instructions, but the register scavenger can introduce
more during PrologEpilogInserter, so some would end up
left behind if they were needed.
The potential for spilling the scratch resource descriptor
and offset register makes doing something like this
overly complicated. Reserve registers to use for the resource
descriptor and use them directly in eliminateFrameIndex.
Also removes creating another scratch resource descriptor
when directly selecting scratch MUBUF instructions.
The choice of which registers are reserved is temporary.
For now it attempts to pick the next available registers
after the user and system SGPRs.
llvm-svn: 254329