Doing so breaks compilation of the following C program
(under -fprofile-instr-generate):
__attribute__((always_inline)) inline int foo() { return 0; }
int main() { return foo(); }
At link time, we fail because taking the address of an
available_externally function creates an undefined external reference,
which the TU cannot provide.
Emitting the function definition into the object file at all appears to
be a violation of the langref: "Globals with 'available_externally'
linkage are never emitted into the object file corresponding to the LLVM
module."
Differential Revision: https://reviews.llvm.org/D34134
llvm-svn: 305327
Summary:
We were writing the length of the string based on system-endianness, and
not universally little-endian. This fixes that.
Reviewers: zturner
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34159
llvm-svn: 305322
Summary:
Leave an updated VP metadata on the fallback memcpy intrinsic after
specialization. This can be used for later possible expansion based on
the average of the remaining values.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34164
llvm-svn: 305321
Summary: Apparently we need to write using a void* pointer on some architectures, or else alignment error is caused.
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D34166
llvm-svn: 305320
Summary:
Previously, when D33102 landed, this broke -Werror buildbots.
http://lab.llvm.org:8011/builders/clang-with-lto-ubuntu/builds/3249
```
FAILED: /home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/install/stage1/bin/clang++ -DGTEST_HAS_RTTI=0 -DLLVM_BUILD_GLOBAL_ISEL -D_DEBUG -D_GNU_SOURCE -D__STDC_CONSTANT_MACROS -D__STDC_FORMAT_MACROS -D__STDC_LIMIT_MACROS -Ilib/CodeGen/AsmPrinter -I/home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/lib/CodeGen/AsmPrinter -Iinclude -I/home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/include -fPIC -fvisibility-inlines-hidden -Werror -Werror=date-time -std=c++11 -Wall -W -Wno-unused-parameter -Wwrite-strings -Wcast-qual -Wmissing-field-initializers -pedantic -Wno-long-long -Wcovered-switch-default -Wnon-virtual-dtor -Wdelete-non-virtual-dtor -Wstring-conversion -fcolor-diagnostics -ffunction-sections -fdata-sections -O3 -UNDEBUG -fno-exceptions -fno-rtti -MMD -MT lib/CodeGen/AsmPrinter/CMakeFiles/LLVMAsmPrinter.dir/CodeViewDebug.cpp.o -MF lib/CodeGen/AsmPrinter/CMakeFiles/LLVMAsmPrinter.dir/CodeViewDebug.cpp.o.d -o lib/CodeGen/AsmPrinter/CMakeFiles/LLVMAsmPrinter.dir/CodeViewDebug.cpp.o -c /home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp
In file included from /home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp:14:
In file included from /home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/lib/CodeGen/AsmPrinter/CodeViewDebug.h:17:
In file included from /home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/lib/CodeGen/AsmPrinter/DbgValueHistoryCalculator.h:15:
In file included from /home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/include/llvm/IR/DebugInfoMetadata.h:26:
In file included from /home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/include/llvm/IR/Metadata.h:23:
/home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/include/llvm/ADT/PointerUnion.h:161:19: error: cast from 'void **' to 'const llvm::DISubprogram **' must have all intermediate pointers const qualified to be safe [-Werror,-Wcast-qual]
return (PT1 *)Val.getAddrOfPointer();
^
/home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/include/llvm/ADT/TinyPtrVector.h:177:18: note: in instantiation of member function 'llvm::PointerUnion<const llvm::DISubprogram *, llvm::SmallVector<const llvm::DISubprogram *, 4> *>::getAddrOfPtr1' requested here
return Val.getAddrOfPtr1();
^
/home/buildbot/Buildbot/Slave1a/clang-with-lto-ubuntu/llvm.src/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp:1885:33: note: in instantiation of member function 'llvm::TinyPtrVector<const llvm::DISubprogram *>::begin' requested here
for (const DISubprogram *SP : MethodItr.second) {
^
1 error generated.
```
Reviewers: dblaikie, akyrtzi
Reviewed By: dblaikie
Subscribers: joerg, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D34153
llvm-svn: 305319
These tests fail on powerpc64 BE (only, not LE) and are thus intefering with
the running of 3 of the powerpc buildbots. The author of the tests has been
notified and is working on fixing them but in the meantime I am disabling
them to get the bots working again.
See https://bugs.llvm.org//show_bug.cgi?id=33429
llvm-svn: 305317
Summary: Added output to stderr so that we can actually see what is happening when the test fails on big endian.
Reviewers: zturner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34155
llvm-svn: 305314
Previously, the matching was done incorrectly for the case where
operands for FCmpInst and SelectInst were in opposite order.
Patch by Andrei Elovikov.
Differential Revision: https://reviews.llvm.org/D33185
llvm-svn: 305308
Store-immediate instructions have a non-extendable offset. Since the
actual offset for a stack object is not known until much later, only
generate these stores when the stack size (at the time of instruction
selection) is small.
llvm-svn: 305305
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: pcc, echristo, aprantl
Reviewed By: aprantl
Subscribers: fhahn, aprantl, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33892
llvm-svn: 305304
Summary: Fixes an issue using RegisterStandardPasses from a statically linked object before PassManagerBuilder::addGlobalExtension is called from a dynamic library.
Reviewers: efriedma, theraven
Reviewed By: efriedma
Subscribers: mehdi_amini, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D33515
llvm-svn: 305303
When a mux instruction is created from a pair of complementary conditional
transfers, it can be placed at the location of either the earlier or the
later of the transfers. Since it will use the operands of the original
transfers, putting it in the earlier location may hoist a kill of a source
register that was originally further down. Make sure the kill flag is
removed if the register is still used afterwards.
llvm-svn: 305300
Summary:
Expose the module descriptor index and fill it in for section
contributions.
Reviewers: zturner
Subscribers: llvm-commits, ruiu, hiraditya
Differential Revision: https://reviews.llvm.org/D34126
llvm-svn: 305296
While simplifying branches in the MachineInstr representation, the
routine BuildCondBr must preserve flags on register MachineOperands. In
particular, it must preserve the <undef> flag.
This fixes a bug that is unlikely to occur in any real scenario, but
which bugpoint is likely to introduce.
Patch By Nick Johnson!
Reviewers: ahatanak, sdardis
Differential Revision: https://reviews.llvm.org/D34041
llvm-svn: 305290
The VFNM[AS] instructions did not have scheduling information attached, which
was causing assertion failures with the Cortex-A57 scheduling model and
-fp-contract=fast, because the Cortex-A57 sched model claims to be complete.
Differential Revision: https://reviews.llvm.org/D34139
llvm-svn: 305288
Much of PR32037's compile time regression is due to getTargetConstantBitsFromNode always creating large (>64bit) APInts during the bitcasting from the source data to the destination bitwidth.
This commit avoids this bitcast stage if the data is already the correct bitwidth.
llvm-svn: 305284
This restores the order of evaluation (& conditionalized evaluation) of
isTriviallyDeadInstruction, InlineHistoryIncludes, and shouldInline
(with the addition of a shouldInline call after
isTriviallyDeadInstruction) from before r305245.
llvm-svn: 305267
These symbols were previously not being marked as functions
so were appearing as globals instead, and with the incorrect
relocation type.
Without this fix, objects that take address of external
functions include them as global imports rather than function
imports which then fails at link time.
Differential Revision: https://reviews.llvm.org/D34068
llvm-svn: 305263
This revert was done so that my other patch to add test framework could
land separately. Now the revert can be reverted and this patch can
reland.
This reverts commit 18b3c75b2b0d32601fb60a06b9672c33d6f0dff9.
llvm-svn: 305259
Summary: Added test cases for multiple machine types, file merging, multiple languages, and more resource types. Also fixed new bugs these tests exposed.
Subscribers: javed.absar, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D34047
llvm-svn: 305258
I accidentally combined this patch with one for adding more tests, they
should be separated.
This reverts commit 3da218a523be78df32e637d3446ecf97c9ea0465.
llvm-svn: 305257
This just forwarded to the same signature in User. The version in User is protected so there's no danger of anyone outside of PHINode constructing with the wrong operator new. All PHINodes are created by a static Create function in PHINode.
I believe at one point in history this called User::operator new(s, 0) so it was useful then.
llvm-svn: 305255
Previously we were writing the value function index space
value but for these types of relocations we want to be
writing the table element index space value.
Add a test case for these relocation types that fails
without this change.
Differential Revision: https://reviews.llvm.org/D33962
llvm-svn: 305253
User has 3 signatures for operator new today. They take a single size, a size and a number of users, and a size, number of users, and descriptor size.
Historically there used to only be one signature that took size and a number of uses. Long ago derived classes implemented their own versions that took just a size and would call the size and use count version. Then they left an unimplemented signature for the size and use count signature from User. As we moved to C++11 this unimplemented signature because = delete.
Since then operator new has picked up two new signatures for operator new. But when the 3 argument version was added it was never added to the delete list in all of the derived classes where the 2 argument version is deleted. This makes things inconsistent.
I believe once one version of operator new is created in a derived class name hiding will take care of making all of the base class signatures unavailable. So I don't think the deleted lines are needed at all.
This patch removes all of the deletes in cases where there is an override or there is already a delete of another signature (that should trigger name hiding too).
Differential Revision: https://reviews.llvm.org/D34120
llvm-svn: 305251
When we get an unknown symbol type, we might as well at least
dump it. Same goes for round-tripping through YAML, we can
dump the record contents as raw bytes even if we don't know
how to interpret it semantically.
llvm-svn: 305248
This fixes PR33157.
https://bugs.llvm.org//show_bug.cgi?id=33157
We might also think about disallowing duplicate dbg.declare intrinsics
entirely, but this may complicate some passes needlessly.
llvm-svn: 305244
It doesn't seem relevant to set an address space limit - this isn't
important in any sense that I'm aware & it gets in the way of things
that use a lot of address space, like llvm-symbolizer.
This came up when I realized that bugpoint regression tests were much
slower with -gsplit-dwarf than plain -g. Turned out that bugpoint
subprocesses (opt, etc) were crashing and doing symbolization - but
bugpoint runs those subprocesses with a 400MB memory limit. So with
plain -g, mmaping the opt binary would exceed the memory limit, fail,
and thus be really fast - no symbolization occurred. Whereas with
-gsplit-dwarf, comically, having less to map in, it would succeed and
then spend lots of time symbolizing.
I've fixed at least the critical part of bugpoint's perf problem there
by adding an option to allow bugpoint to disable symbolization. Thus
improving the perfromance for -gsplit-dwarf and making the -g-esque
speed available without this quirk/accidental benefit.
llvm-svn: 305242
This one occurred when we were dumping symbols, we have code
that is prepared to dump many different types of symbols,
including symbols which reference an ID stream. So when creating
the dumper object, we assume that there is an ID stream. Fix
this assumption.
llvm-svn: 305237
The last fix required the user to manually add the required
feature. This caused an LLD test to fail because I failed to
update LLD. In practice we can hide this logic so it can just
be transparently added when we write the PDB.
llvm-svn: 305236
Older PDBs don't have this. Its presence is detected by using
the various "feature" flags that come at the end of the PDB
Stream. Detect this, and don't try to dump the ID stream if the
features tells us it's not present.
llvm-svn: 305235
Summary:
After RS4GC, we should drop metadata that is no longer valid. These metadata
is used by optimizations scheduled after RS4GC, and can cause a miscompile.
One such metadata is invariant.load which is used by LICM sinking transform.
After rewriting statepoints, the address of a load maybe relocated. With
invariant.load metadata on a load instruction, LICM sinking assumes the
loaded value (from a dererenceable address) to be invariant, and
rematerializes the load operand and the load at the exit block.
This transforms the IR to have an unrelocated use of the
address after a statepoint, which is incorrect.
Other metadata we conservatively remove are related to
dereferenceability and noalias metadata.
This patch drops such metadata on store and load instructions after
rewriting statepoints.
Reviewers: reames, sanjoy, apilipenko
Reviewed by: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33756
llvm-svn: 305234
This is a precursor to another change (coming soon) that aims to make
FoldingSet's API more type-safe. Without this, the type-safety change
would just duplicate 4 more public methods between the already very
similar classes.
This renames FoldingSetImpl to FoldingSetBase so it's consistent with
the FooBase -> FooImpl<T> -> Foo<T> convention we seem to have with
other containers.
llvm-svn: 305231
The "Add/sub (shifted reg)" instructions use the 31 encoding for xzr and wzr
rather than the SP, so we need to use different variants.
Situations where this actually comes up are rare enough (see test-case) that I
think falling back to DAG is fine.
llvm-svn: 305230
Static data members were causing a problem because I mistakenly
assumed all members would affect a class's layout and so the
Layout member would be non-null.
llvm-svn: 305229
Fix thinko/typo in subreg aware liverange splitting logic. I'm not sure
how to write a proper testcase for this. The original problem only
happens on an out-of-tree target. Forcing subreg enabled targets to
spill and split in a predictable way is near impossible.
llvm-svn: 305228
Summary:
Use the filepath used to open the archive member as the archive member
name instead of the file basename. This path might be absolute or
relative. This is important because the archive member name will show
up in the PDB, and we want our PDBs to look as much like MSVC's as
possible.
This also helps avoid an issue in our PDB module descriptor writing
code, which assumes that all module names are unique. Relative paths
still aren't guaranteed to be unique, but they're much better than
basenames, which definitely aren't unique.
Reviewers: ruiu, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33575
llvm-svn: 305223
Power9 has instructions that will reverse the bytes within an element for all
sizes (half-word, word, double-word and quad-word). These can be used for the
vec_revb builtins in altivec.h. However, we implement these to match vector
shuffle nodes as that will cover both the builtins and vector shuffles that
occur in the SDAG through other means.
Differential Revision: https://reviews.llvm.org/D33690
llvm-svn: 305214
Note that if we need the result of both the divide and the modulo then we
compute the modulo based on the result of the divide and not using the new
hardware instruction.
Commit on behalf of STEFAN PINTILIE.
Differential Revision: https://reviews.llvm.org/D33940
llvm-svn: 305210
The dream of a unified check-line auto-generator for all phases of compilation is dead.
The llc script has already diverged to be better at its goal, so having 2 scripts that
do almost the same thing just causes confusion. Now, this script will only work with
opt to produce check lines for IR transforms.
llvm-svn: 305208
The dream of a unified check-line auto-generator for all phases of compilation is dead.
The llc script has already diverged to be better at its goal, so having 2 scripts that
do almost the same thing is just causing confusion.
We can rip out the llc ability in update_test_checks.py next and rename it, so it will
be clear that we have one script for llc check auto-generation and another for opt.
llvm-svn: 305206
Summary:
This change enables the sin(x) cos(x) -> sincos(x) optimization on GNU
target triples. This optimization was being inhibited when -ffast-math
wasn't set because sincos in GLibC does not set errno, while sin and cos
do. However, this optimization will only run if the attributes on the
sin/cos calls include readnone, which is how clang represents the fact
that it doesn't care about the errno values set by these functions (via
the -fno-math-errno flag).
Reviewers: hfinkel, bogner
Subscribers: mcrosier, javed.absar, llvm-commits, paul.redmond
Differential Revision: https://reviews.llvm.org/D32921
llvm-svn: 305204
The dream of a unified check-line auto-generator for all phases of compilation is dead.
The llc script has already diverged to be better at its goal, so having 2 scripts that
do almost the same thing is just causing confusion for newcomers. I plan to fix up more
x86 tests in a next commit. We can rip out the llc ability in update_test_checks.py after
that.
llvm-svn: 305202
Summary:
The old check for slot overlap treated 2 slots `S` and `T` as
overlapping if there existed a CFG node in which both of the slots could
possibly be active. That is overly conservative and caused stack blowups
in Rust programs. Instead, check whether there is a single CFG node in
which both of the slots are possibly active *together*.
Fixes PR32488.
Patch by Ariel Ben-Yehuda <ariel.byd@gmail.com>
Reviewers: thanm, nagisa, llvm-commits, efriedma, rnk
Reviewed By: thanm
Subscribers: dotdash
Differential Revision: https://reviews.llvm.org/D31583
llvm-svn: 305193
This step is just intended to reduce code duplication rather than change any functionality.
A follow-up would be to replace PPCTargetLowering::spliceIntoChain() usage with this new helper.
Differential Revision: https://reviews.llvm.org/D33649
llvm-svn: 305192
Summary: The method TargetTransformInfo::getRegisterBitWidth() is declared const, but the type erasing implementation classes (TargetTransformInfo::Concept & TargetTransformInfo::Model) that were introduced by Chandler in https://reviews.llvm.org/D7293 do not have the method declared const. This is an NFC to tidy up the const consistency between TTI and its implementation.
Reviewers: chandlerc, rnk, reames
Reviewed By: reames
Subscribers: reames, jfb, arsenm, dschuff, nemanjai, nhaehnle, javed.absar, sbc100, jgravelle-google, llvm-commits
Differential Revision: https://reviews.llvm.org/D33903
llvm-svn: 305189
First possible step towards merging SSE/AVX memory folding pattern fragments.
Also allows us to remove the duplicate non-temporal load logic.
Differential Revision: https://reviews.llvm.org/D33902
llvm-svn: 305184
Running unittests/Support/DynamicLibrary/DynamicLibraryTests fails
when LLVM is configured with -DLLVM_EXPORT_SYMBOLS_FOR_PLUGINS=ON, because
the test's version script only contains symbols extracted from the static libraries,
that the test links with, but not those from the main object/executable itself.
The patch moves the one symbol, needed by the test, to a static library.
Fixes https://bugs.llvm.org/show_bug.cgi?id=32893
Patch by Momchil Velikov.
Differential Revision: https://reviews.llvm.org/D33789
llvm-svn: 305181
Summary:
LLDB built with asan on NetBSD detected issues in the following code:
```
void ArchSpec::Clear() {
m_triple = llvm::Triple();
m_core = kCore_invalid;
m_byte_order = eByteOrderInvalid;
m_distribution_id.Clear();
m_flags = 0;
}
```
--- lldb/source/Core/ArchSpec.cpp
Runtime error messages:
/public/pkgsrc-tmp/wip/lldb-netbsd/work/.buildlink/include/llvm/ADT/Triple.h:44:7: runtime error: load of value 32639, which is not a valid value for type 'SubArchType'
/public/pkgsrc-tmp/wip/lldb-netbsd/work/.buildlink/include/llvm/ADT/Triple.h:44:7: runtime error: load of value 3200171710, which is not a valid value for type 'SubArchType'
/public/pkgsrc-tmp/wip/lldb-netbsd/work/.buildlink/include/llvm/ADT/Triple.h:44:7: runtime error: load of value 3200171710, which is not a valid value for type 'SubArchType'
Correct this issue with initialization of SubArch() in the class Triple constructor.
Sponsored by <The NetBSD Foundation>
Reviewers: chandlerc, zturner
Reviewed By: zturner
Subscribers: llvm-commits, zturner
Differential Revision: https://reviews.llvm.org/D33845
llvm-svn: 305178
I was looking closer at the x86 test diffs in D33866, and the first change seems like it
shouldn't happen in the first place. So this patch will resolve that.
Using Agner's tables and AMD docs, vperm2f128 and vinsertf128 have identical timing for
any given CPU model, so we should be able to interchange those without affecting perf.
But as we can see in some of the diffs here, using vperm2f128 allows load folding, so
we should take that opportunity to reduce code size and register pressure.
A secondary advantage is making AVX1 and AVX2 codegen more similar. Given that vperm2f128
was introduced with AVX1, we should be selecting it in all of the same situations that we
would with AVX2. If there's some reason that an AVX1 CPU would not want to use this
instruction, that should be fixed up in a later pass.
Differential Revision: https://reviews.llvm.org/D33938
llvm-svn: 305171