Use the function attributes to pass along the stack protector buffer size.
Now that we have robust function attributes, don't use a command line option to
specify the stack protecto buffer size.
llvm-svn: 186863
There already have two "dead" functions, initialize{IPO|IPA}, defined for
similar purpose. I decide not to call these two functions for two reasons:
o. they don't cover all LTO passes (which will soon be separated into IPO
and post-IPO passes)
o. We have not yet figured out the right passes and the ordering for IPO
and post-IPO stages, meaning this change is only for the time being.
Since LTO passes are registered, we are now able to print IR before and
after particular point.
For OSX users:
--------------
"...-Wl,-mllvm -Wl,-print-after=<pass-name>" will print IR after the
specified pass.
For Other UNIX with GNU gold linker:
------------------------------------
"-Wl,-plugin-opt=-print-after=<pass-name>" should work.
(NOTE: no need for "-Wl,-mllvm")
Strip "-Wl," if flags are fed directly to linker instead of clang/clang++.
llvm-svn: 186853
The problem with running internalize before we're ready to output an object file
is that it may change a 'weak' symbol into an internal one, but that symbol
could be needed by an external object file --- e.g. with arclite.
<rdar://problem/14334895>
llvm-svn: 185882
This is dead code since PIC16 was removed in 2010. The result was an odd mix,
where some parts would carefully pass it along and others would assert it was
zero (most of the object streamer for example).
llvm-svn: 185436
Specifying the load address for Darwin i386 dylibs was a performance
optimization for dyld that is not relevant for x86_64 or arm. We can just
remove this now.
llvm-svn: 183230
Move the processing of the command line options to right before we create the
TargetMachine instead of after.
<rdar://problem/13468287>
llvm-svn: 182611
Update comments, fix * placement, fix method names that are not
used in clang, add a linkInModule that takes a Mode and put it
in Linker.cpp.
llvm-svn: 181099
LTO was always creating an empty llvm.compiler.used. With this patch we
now first check if there is anything to be added first.
Unfortunately, there is no good way to test libLTO in isolation as it needs gold
or ld64, but there are bots doing LTO builds that found this problem.
llvm-svn: 180202
codegen passes. This brings it in to line with clang and llc's codegen setup,
and tidies up the code.
If I understand correctly, adding ModulePasses to a FunctionPassManager is
bogus. It only seems to explode if an added ModulePass depends on a
FunctionPass though, which might be why this code has survived so long.
Fixes <rdar://problem/13386816>.
llvm-svn: 176977
- Consistency with opt (which supports the same option with the same meaning and
description).
- Debugging gold plugin-based linking without optimizations getting in the way.
- Debugging programs linked with the gold plugin while preserving the original
debug info.
- Fine-grained control over LTO passes using the gold plugin in combination with
opt (or clang/dragonegg).
Patch by Cristiano Giuffrida!
llvm-svn: 176257
isa<> and dyn_cast<>. In several places, code is already hacking around
the absence of this, and there seem to be several interfaces that might
be lifted and/or devirtualized using this.
This change was based on a discussion with Jim Grosbach about how best
to handle testing for specific MCStreamer subclasses. He said that this
was the correct end state, and everything else was too hacky so
I decided to just make it so.
No functionality should be changed here, this is just threading the kind
through all the constructors and setting up the classof overloads.
llvm-svn: 174113
The aim of this patch is to fix the following piece of code in the
platform-independent AsmParser:
void AsmParser::CheckForValidSection() {
if (!ParsingInlineAsm && !getStreamer().getCurrentSection()) {
TokError("expected section directive before assembly directive");
Out.SwitchSection(Ctx.getMachOSection(
"__TEXT", "__text",
MCSectionMachO::S_ATTR_PURE_INSTRUCTIONS,
0, SectionKind::getText()));
}
}
This was added for the "-n" option of llvm-mc.
The proposed fix adds another virtual method to MCStreamer, called
InitToTextSection. Conceptually, it's similar to the existing
InitSections which initializes all common sections and switches to
text. The new method is implemented by each platform streamer in a way
that it sees fit. So AsmParser can now do this:
void AsmParser::CheckForValidSection() {
if (!ParsingInlineAsm && !getStreamer().getCurrentSection()) {
TokError("expected section directive before assembly directive");
Out.InitToTextSection();
}
}
Which is much more reasonable.
llvm-svn: 172450
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.htmlhttp://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
llvm-svn: 170279
The linker will call `lto_codegen_add_must_preserve_symbol' on all globals that
should be kept around. The linker will pretend that a dylib is being created.
<rdar://problem/12528059>
llvm-svn: 169770
This function sets the `_exportDynamic' ivar. When that's set, we export all
symbols (e.g. we don't run the internalize pass). This is equivalent to the
`--export-dynamic' linker flag in GNU land:
--export-dynamic
When creating a dynamically linked executable, add all symbols to the dynamic
symbol table. The dynamic symbol table is the set of symbols which are visible
from dynamic objects at run time. If you do not use this option, the dynamic
symbol table will normally contain only those symbols which are referenced by
some dynamic object mentioned in the link. If you use dlopen to load a dynamic
object which needs to refer back to the symbols defined by the program, rather
than some other dynamic object, then you will probably need to use this option
when linking the program itself.
The Darwin linker will support this via the `-export_dynamic' flag. We should
modify clang to support this via the `-rdynamic' flag.
llvm-svn: 169656
Again, tools are trickier to pick the main module header for than
library source files. I've started to follow the pattern of using
LLVMContext.h when it is included as a stub for program source files.
llvm-svn: 169252
Necessary to give disassembler users (like darwin's otool) a possibility to
dlopen libLTO and still initialize the required LLVM bits. This used to go
through libMCDisassembler but that's a gross layering violation, the MC layer
can't pull in functions from the targets. Adding a function to libLTO is a bit
of a hack but not worse than exposing other disassembler bits from libLTO.
Fixes PR14362.
llvm-svn: 168545
Per the October 12, 2012 Proposal for annotated disassembly output sent out by
Jim Grosbach this set of changes implements this for X86 and arm. The llvm-mc
tool now has a -mdis option to produced the marked up disassembly and a couple
of small example test cases have been added.
rdar://11764962
llvm-svn: 166445
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
llvm-svn: 166168
This is a temporary hack until Bill's project to record command line options
in the LLVM IR is ready. Clang currently sets a default CPU but that isn't
recorded anywhere and it doesn't get used in the final LTO compilation.
llvm-svn: 165809
make it more consistent with its intended semantics.
The `linker_private_weak_def_auto' linkage type was meant to automatically hide
globals which never had their addresses taken. It has nothing to do with the
`linker_private' linkage type, which outputs the symbols with a `l' (ell) prefix
among other things.
The intended semantic is more like the `linkonce_odr' linkage type.
Change the name of the linkage type to `linkonce_odr_auto_hide'. And therefore
changing the semantics so that it produces the correct output for the linker.
Note: The old linkage name `linker_private_weak_def_auto' will still parse but
is not a synonym for `linkonce_odr_auto_hide'. This should be removed in 4.0.
<rdar://problem/11754934>
llvm-svn: 162114
When the command line target options were removed from the LLVM libraries, LTO
lost its ability to specify things like `-disable-fp-elim'. Add this back by
adding the command line variables to the `lto' project.
<rdar://problem/12038729>
llvm-svn: 161353
There are some that I didn't remove this round because they looked like
obvious stubs. There are dead variables in gtest too, they should be
fixed upstream.
llvm-svn: 158090
This broke in r144788 when the CodeGenOpt option was moved from everywhere else
(specifically, from addPassesToEmitFile) to createTargetMachine. Since
LTOCodeGenerator wasn't passing the 4th argument, when the 4th parameter became
the 3rd, it silently continued to compile (int->bool conversion) but meant
something completely different.
This change preserves the existing (accidental) and previous (default)
semantics of the addPassesToEmitFile and restores the previous/intended
CodeGenOpt argument by passing it appropriately to createTargetMachine.
(discovered by pending changes to -Wconversion to catch constant->bool
conversions)
llvm-svn: 157705
so we don't want it to show up in the stable 3.1 interface.
While at it, add a comment about why LTOCodeGenerator manually creates the
internalize pass.
llvm-svn: 154807
Consider the following program:
$ cat main.c
void foo(void) { }
int main(int argc, char *argv[]) {
foo();
return 0;
}
$ cat bundle.c
extern void foo(void);
void bar(void) {
foo();
}
$ clang -o main main.c
$ clang -o bundle.so bundle.c -bundle -bundle_loader ./main
$ nm -m bundle.so
0000000000000f40 (__TEXT,__text) external _bar
(undefined) external _foo (from executable)
(undefined) external dyld_stub_binder (from libSystem)
$ clang -o main main.c -O4
$ clang -o bundle.so bundle.c -bundle -bundle_loader ./main
Undefined symbols for architecture x86_64:
"_foo", referenced from:
_bar in bundle-elQN6d.o
ld: symbol(s) not found for architecture x86_64
clang: error: linker command failed with exit code 1 (use -v to see invocation)
The linker was told that the 'foo' in 'main' was 'internal' and had no uses, so
it was dead stripped.
Another situation is something like:
define void @foo() {
ret void
}
define void @bar() {
call asm volatile "call _foo" ...
ret void
}
The only use of 'foo' is inside of an inline ASM call. Since we don't look
inside those for uses of functions, we don't specify this as a "use."
Get around this by not invoking the 'internalize' pass by default. This is an
admitted hack for LTO correctness.
<rdar://problem/11185386>
llvm-svn: 154124
reflected in the LLVM IR (as a declare or something), then treat it like a data
object.
N.B. This isn't 100% correct. The ASM parser should supply more information so
that we know what type of object it is, and what attributes it should have.
llvm-svn: 153870
Module-level ASM may contain definitions of functions and globals. However, we
were not telling the linker that these globals had definitions. As far as it was
concerned, they were just declarations.
Attempt to resolve this by inserting module-level ASM functions and globals into
the '_symbol' set so that the linker will know that they have values.
This gets us further towards our goal of compiling LLVM, but it still has
problems when linking libLTO.dylib because of the `-dead_strip' flag that's
passed to the linker.
<rdar://problem/11124216>
llvm-svn: 153638
but with a critical fix to the SelectionDAG code that optimizes copies
from strings into immediate stores: the previous code was stopping reading
string data at the first nul. Address this by adding a new argument to
llvm::getConstantStringInfo, preserving the behavior before the patch.
llvm-svn: 149800
This is the initial checkin of the basic-block autovectorization pass along with some supporting vectorization infrastructure.
Special thanks to everyone who helped review this code over the last several months (especially Tobias Grosser).
llvm-svn: 149468
file error checking. Use that to error on an unfinished cfi_startproc.
The error is not nice, but is already better than a segmentation fault.
llvm-svn: 147717
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
- On COFF the .lcomm directive has an alignment argument.
- On ELF we fall back to .local + .comm
Based on a patch by NAKAMURA Takumi.
Fixes PR9337, PR9483 and PR10128.
llvm-svn: 138976
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468
to MCRegisterInfo. Also initialize the mapping at construction time.
This patch eliminate TargetRegisterInfo from TargetAsmInfo. It's another step
towards fixing the layering violation.
llvm-svn: 135424
TargetAsmInfo, which in turn pulls in TargetRegisterInfo, etc. :-( There are
other cases of violations, but this is probably the worst.
This patch is but one small step towards fixing this. 500 more steps to go. :-(
llvm-svn: 135131
CPU, and feature string. Parsing some asm directives can change
subtarget state (e.g. .code 16) and it must be reflected in other
modules (e.g. MCCodeEmitter). That is, the MCSubtargetInfo instance
must be shared.
llvm-svn: 134795
- Each target asm parser now creates its own MCSubtatgetInfo (if needed).
- Changed AssemblerPredicate to take subtarget features which tablegen uses
to generate asm matcher subtarget feature queries. e.g.
"ModeThumb,FeatureThumb2" is translated to
"(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
llvm-svn: 134678
be the first encoded as the first feature. It then uses the CPU name to look up
features / scheduling itineray even though clients know full well the CPU name
being used to query these properties.
The fix is to just have the clients explictly pass the CPU name!
llvm-svn: 134127
character in std::string was causing failures for a few ObjC and Obj-C++ tests
when -flto was enabled. Revision 133999 resolved this issue. Thanks Jay!
rdar://9685235
PR10210
llvm-svn: 134017
This was causing compile-time failures for some of the Objc and Obj-C++
benchmarks. The specific errors were of the form: "ld: duplicate symbol …"
rdar://9660124
llvm-svn: 133955
for all symbol differences and can drop the old EmitPCRelSymbolValue
method.
This also make getExprForFDESymbol on ELF equal to the one on MachO, and it
can be made non-virtual.
llvm-svn: 130634