Our alias checks precisely check that the minimal and maximal accessed elements
do not overlap in a kernel. Hence, we must ensure that our host <-> device
transfers do not touch additional memory locations that are not covered in
the alias check. To ensure this, we make sure that the data we copy for a
given array is only the data from the smallest element accessed to the largest
element accessed.
We also adjust the size of the array according to the offset at which the array
is actually accessed.
An interesting result of this is: In case array are accessed with negative
subscripts ,e.g., A[-100], we automatically allocate and transfer _more_ data to
cover the full array. This is important as such code indeed exists in the wild.
llvm-svn: 281611
This is the fourth patch to apply the BLIS matmul optimization pattern on matmul
kernels (http://www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf).
BLIS implements gemm as three nested loops around a macro-kernel, plus two
packing routines. The macro-kernel is implemented in terms of two additional
loops around a micro-kernel. The micro-kernel is a loop around a rank-1
(i.e., outer product) update. In this change we perform copying to created
arrays, which is the last step to implement the packing transformation.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D23260
llvm-svn: 281441
We do not need the size of the outermost dimension in most cases, but if we
allocate memory for newly created arrays, that size is needed.
Reviewed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: https://reviews.llvm.org/D23991
llvm-svn: 281234
Instead of aborting, we now bail out gracefully in case the kernel IR we
generate is invalid. This can currently happen in case the SCoP stores
pointer values, which we model as arrays, as data values into other arrays. In
this case, the original pointer value is not available on the device and can
consequently not be stored. As detecting this ahead of time is not so easy, we
detect these situations after the invalid IR has been generated and bail out.
llvm-svn: 281193
If these arrays have never been accessed we failed to derive an upper bound
of the accesses and consequently a size for the outermost dimension. We
now explicitly check for empty access sets and then just use zero as size
for the outermost dimension.
llvm-svn: 281165
LLVM's coding guideline suggests to not use @brief for one-sentence doxygen
comments to improve readability. Switch this once and for all to ensure people
do not copy @brief comments from other parts of Polly, when writing new code.
llvm-svn: 280468
Change the code around setNewAccessRelation to allow to use a an existing array
element for memory instead of an ad-hoc alloca. This facility will be used for
DeLICM/DeGVN to convert scalar dependencies into regular ones.
The changes necessary include:
- Make the code generator use the implicit locations instead of the alloca ones.
- A test case
- Make the JScop importer accept changes of scalar accesses for that test case.
- Adapt the MemoryAccess interface to the fact that the MemoryKind can change.
They are named (get|is)OriginalXXX() to get the status of the memory access
before any change by setNewAccessRelation() (some properties such as
getIncoming() do not change even if the kind is changed and are still
required). To get the modified properties, there is (get|is)LatestXXX(). The
old accessors without Original|Latest become synonyms of the
(get|is)OriginalXXX() to not make functional changes in unrelated code.
Differential Revision: https://reviews.llvm.org/D23962
llvm-svn: 280408
We already invalidated a couple of critical values earlier on, but we now
invalidate all instructions contained in a scop after the scop has been code
generated. This is necessary as later scops may otherwise obtain SCEV
expressions that reference values in the earlier scop that before dominated
the later scop, but which had been moved into the conditional branch and
consequently do not dominate the later scop any more. If these very values are
then used during code generation of the later scop, we generate used that are
dominated by the values they use.
This fixes: http://llvm.org/PR28984
llvm-svn: 279047
To do so we change the way array exents are computed. Instead of the precise
set of memory locations accessed, we now compute the extent as the range between
minimal and maximal address in the first dimension and the full extent defined
by the sizes of the inner array dimensions.
We also move the computation of the may_persist region after the construction
of the arrays, as it relies on array information. Without arrays being
constructed no useful information is computed at all.
llvm-svn: 278212
Ensure the right scalar allocations are used as the host location of data
transfers. For the device code, we clear the allocation cache before device
code generation to be able to generate new device-specific allocation and
we need to make sure to add back the old host allocations as soon as the
device code generation is finished.
llvm-svn: 278126
This increases the readability of the IR and also clarifies that the GPU
inititialization is executed _after_ the scalar initialization which needs
to before the code of the transformed scop is executed.
Besides increased readability, the IR should not change. Specifically, I
do not expect any changes in program semantics due to this patch.
llvm-svn: 278125
In case some code -- not guarded by control flow -- would be emitted directly in
the start block, it may happen that this code would use uninitalized scalar
values if the scalar initialization is only emitted at the end of the start
block. This is not a problem today in normal Polly, as all statements are
emitted in their own basic blocks, but Polly-ACC emits host-to-device copy
statements into the start block.
Additional Polly-ACC test coverage will be added in subsequent changes that
improve the handling of PHI nodes in Polly-ACC.
llvm-svn: 278124
After having generated the code for a ScopStmt, we run a simple dead-code
elimination that drops all instructions that are known to be and remain unused.
Until this change, we only considered instructions for dead-code elimination, if
they have a corresponding instruction in the original BB that belongs to
ScopStmt. However, when generating code we do not only copy code from the BB
belonging to a ScopStmt, but also generate code for operands referenced from BB.
After this change, we now also considers code for dead code elimination, which
does not have a corresponding instruction in BB.
This fixes a bug in Polly-ACC where such dead-code referenced CPU code from
within a GPU kernel, which is possible as we do not guarantee that all variables
that are used in known-dead-code are moved to the GPU.
llvm-svn: 278103
When adding code that avoids to pass values used in isl expressions and
LLVM instructions twice, we forgot to make single variable passed to the
kernel available in the ValueMap that makes it usable for instructions that
are not replaced with isl ast expressions. This change adds the variable
that is passed to the kernel to the ValueMap to ensure it is available
for such use cases as well.
llvm-svn: 278039
There is no need to reset the position of the builder, as we can just continue
to insert code at the current position of the IRBuilder, which happens to
be precisely the location we reset the builder to.
llvm-svn: 278014
... instead of adding instructions at the end of the basic block the builder
is currently at. This makes it easier to reason about where IR is generated,
as with the IRBuilder there is just a single location that specificies where
IR is generated.
llvm-svn: 278013
The map is iterated over when generating the values escaping the SCoP. The
indeterministic iteration order of DenseMap causes the output IR to change at
every compilation, adding noise to comparisons.
Replace DenseMap by a MapVector to ensure the same iteration order at every
compilation.
llvm-svn: 277832
Before this commit we generated the array type in reverse order and we also
added the outermost dimension size to the new array declaration, which is
incorrect as Polly additionally assumed an additional unsized outermost
dimension, such that we had an off-by-one error in the linearization of access
expressions.
llvm-svn: 277802
These annotations ensure that the NVIDIA PTX assembler limits the number of
registers used such that we can be certain the resulting kernel can be executed
for the number of threads in a thread block that we are planning to use.
llvm-svn: 277799
Pass the content of scalar array references to the alloca on the kernel side
and do not pass them additional as normal LLVM scalar value.
llvm-svn: 277699
Otherwise, we would try to re-optimize them with Polly-ACC and possibly even
generate kernels that try to offload themselves, which does not work as the
GPURuntime is not available on the accelerator and also does not make any
sense.
llvm-svn: 277589
Extend the jscop interface to allow the user to export arrays. It is required
that already existing arrays of the list of arrays correspond to arrays
of the SCoP. Each array that is appended to the list will be newly created.
Furthermore, we allow the user to modify access expressions to reference
any array in case it has the same element type.
Reviewed-by: Tobias Grosser <tobias@grosser.es>
Differential Revision: https://reviews.llvm.org/D22828
llvm-svn: 277263
Before this change we used the array index, which would result in us accessing
the parameter array out-of-bounds. This bug was visible for test cases where not
all arrays in a scop are passed to a given kernel.
llvm-svn: 276961
Also factor out getArraySize() to avoid code dupliciation and reorder some
function arguments to indicate the direction into which data is transferred.
llvm-svn: 276636
At the beginning of each SCoP, we allocate device arrays for all arrays
used on the GPU and we free such arrays after the SCoP has been executed.
llvm-svn: 276635
There is no need to expose the selected device at the moment. We also pass back
pointers as return values, as this simplifies the interface.
llvm-svn: 276623
This allows the finalization routine of the IslNodeBuilder to be overwritten
by derived classes. Being here, we also drop the unnecessary 'Scop' postfix
and the unnecessary 'Scop' parameter.
llvm-svn: 276622
We optimize the kernel _after_ dumping the IR we generate to make the IR we
dump easier readable and independent of possible changes in the general
purpose LLVM optimizers.
llvm-svn: 276551
Run the NVPTX backend over the GPUModule IR and write the resulting assembly
code in a string.
To work correctly, it is important to invalidate analysis results that still
reference the IR in the kernel module. Hence, this change clears all references
to dominators, loop info, and scalar evolution.
Finally, the NVPTX backend has troubles to generate code for various special
floating point types (not surprising), but also for uncommon integer types. This
commit does not resolve these issues, but pulls out problematic test cases into
separate files to XFAIL them individually and resolve them in future (not
immediate) changes one by one.
llvm-svn: 276396
This change introduces the actual compute code in the GPU kernels. To ensure
all values referenced from the statements in the GPU kernel are indeed available
we scan all ScopStmts in the GPU kernel for references to llvm::Values that
are not yet covered by already modeled outer loop iterators, parameters, or
array base pointers and also pass these additional llvm::Values to the
GPU kernel.
For arrays used in the GPU kernel we introduce a new ScopArrayInfo object, which
is referenced by the newly generated access functions within the GPU kernel and
which is used to help with code generation.
llvm-svn: 276270
This is useful for external users using IslExprBuilder, in case they cannot
embed ScopArrayInfo data into their isl_ids, because the isl_ids either already
carry other information or the isl_ids have been created and their user pointers
cannot be updated any more.
llvm-svn: 276268
This ensures that no trivially dead code is generated. This is not only cleaner,
but also avoids troubles in case code is generated in a separate function and
some of this dead code contains references to values that are not available.
This issue may happen, in case the memory access functions have been updated
and old getelementptr instructions remain in the code. With normal Polly,
a test case is difficult to draft, but the upcoming GPU code generation can
possibly trigger such problems. We will later extend this dead-code elimination
to region and vector statements.
llvm-svn: 276263
This is currently not supported and will only be added later. Also update the
test cases to ensure no invariant code hoisting is applied.
llvm-svn: 275987
We use this opportunity to further classify the different user statements that
can arise and add TODOs for the ones not yet implemented.
llvm-svn: 275957
Create for each kernel a separate LLVM-IR module containing a single function
marked as kernel function and taking one pointer for each array referenced
by this kernel. Add debugging output to verify the kernels are generated
correctly.
llvm-svn: 275952
Initialize the list of references to a GPU array to ensure that the arrays that
need to be passed to kernel calls are computed correctly. Furthermore, the very
same information is also necessary to compute synchronization correctly. As the
functionality to compute these references is already available, what is left for
us to do is only to connect the necessary functionality to compute array
reference information.
llvm-svn: 275798
Create LLVM-IR for all host-side control flow of a given GPU AST. We implement
this by introducing a new GPUNodeBuilder class derived from IslNodeBuilder. The
IslNodeBuilder will take care of generating all general-purpose ast nodes, but
we provide our own createUser implementation to handle the different GPU
specific user statements. For now, we just skip any user statement and only
generate a host-code sceleton, but in subsequent commits we will add handling of
normal ScopStmt's performing computations, kernel calls, as well as host-device
data transfers. We will also introduce run-time check generation and LICM in
subsequent commits.
llvm-svn: 275783
Otherwise ppcg would try to call into pet functionality that this not available,
which obviously will cause trouble. As we can easily print these statements
ourselves, we just do so.
llvm-svn: 275579
This option increases the scalability of the scheduler and allows us to remove
the 'gisting' workaround we introduced in r275565 to handle a more complicated
test case. Another benefit of using this option is also that the generated
code looks a lot more streamlined.
Thanks to Sven Verdoolaege for reminding me of this option.
llvm-svn: 275573
This works around a shortcoming of the isl scheduler, which even for some
smaller test cases does not terminate in case domain constraints are part
of the flow dependences.
llvm-svn: 275565
It seems we forgot to actually add the memory access ids to the tagged accesses,
but instead just tagged the accesses with empty isl_ids. This issue was found
by inspection and without code generation it is difficult to test just by
itself. We fix it for now without test case and expect our code generation
tests to cover this later on.
llvm-svn: 275557
Instead of directly linking to ppcg's main source directory, we link to the
parent director. This allows us to access ppcg's include files with
'ppcg/cuda.h' and avoids a conflict with NVIDIA's cuda.h header.
Also drop an include directory that is currently not used.
llvm-svn: 275536
For this we need to provide an explicit list of statements as they occur in
the polly::Scop to ppcg.
We also setup basic AST printing facilities to facilitate debugging. To allow
code reuse some (minor) changes in ppcg are have been necessary.
llvm-svn: 275436
Instead of calling to a pet function that does not return anything, we pass
our own dummy implementation to ppcg that always returns a nullptr. This
ensures that the list of ast expressions always contains a nullptr and we do
not accidentally free a random (uninitalized) pointer. This resolves the
last valgrind warning we see.
We provide an implementation for this function, when the generated AST
expressions can be used and consequently can be tested.
llvm-svn: 275435
The tile size was previously uninitialized. As a result, it was often zero (aka.
no tiling), which is not what we want in general. More importantly, there was
the risk for arbitrary tile sizes to be choosen, which we did not observe, but
which still is highly problematic.
llvm-svn: 275418
This change now applies ppcg's GPU mapping on our initial schedule. For this
to work, we need to also initialize the set of all names (isl_ids) used in
the scop as well as the program context.
llvm-svn: 275396
To do so we copy the necessary information to compute an initial schedule from
polly::Scop to ppcg's scop. Most of the necessary information is directly
available and only needs to be passed on to ppcg, with the exception of 'tagged'
access relations, access relations that additionally carry information about
which memory access an access relation originates from.
We could possibly perform the construction of tagged accesses as part of
ScopInfo, but as this format is currently specific to ppcg we do not do this
yet, but keep this functionality local to our GPU code generation.
After the scop has been initialized, we compute data dependences and ask ppcg to
compute an initial schedule. Some of this functionality is already available in
polly::DependenceInfo and polly::ScheduleOptimizer, but to keep differences
to ppcg small we use ppcg's functionality here. We may later investiage if
a closer integration of these tools makes sense.
llvm-svn: 275390
At this stage, we do not yet modify the IR but just generate a default
initialized ppcg_scop and gpu_prog and free both immediately. Both will later be
filled with data from the polly::Scop and are needed to use PPCG for GPU
schedule generation. This commit does not yet perform any GPU code generation,
but ensures that the basic infrastructure has been put in place.
We also add a simple test case to ensure the new code is run and use this
opportunity to verify that GPU_CODEGEN tests are only run if GPU code generation
has been enabled in cmake.
llvm-svn: 275389
Add a new pass to serve as basis for automatic accelerator mapping in Polly.
The pass structure and the analyses preserved are copied from
CodeGeneration.cpp, as we will rely on IslNodeBuilder and IslExprBuilder for
LLVM-IR code generation.
Polly's accelerator code generation is enabled with -polly-target=gpu
I would like to use this commit as opportunity to thank Yabin Hu for his work in
the context of two Google summer of code projects during which he implemented
initial prototypes of the Polly accelerator code generation -- in parts this
code is already available in todays Polly (e.g., tools/GPURuntime). More will
come as part of the upcoming Polly ACC changes.
Reviewers: Meinersbur
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D22036
llvm-svn: 275275
Commit r275056 introduced a gcc compile failure due to us using two
types named 'Type', the first being the newly introduced member variable
'Type' the second being llvm::Type. We resolve this issue by renaming
the newly introduced member variable to AccessType.
llvm-svn: 275057
Summary:
With a struct we can use named accessors instead of generic std::get<3>()
calls. This increases readability of the source code.
Reviewers: jdoerfert
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D21955
llvm-svn: 275056
This is a regular maintenance update to ensure the latest version of isl is
tested.
Interesting Changes:
- AST nodes and expressions are now printed as YAML
llvm-svn: 274614
Since r274197 -polly-position=before-vectorizer caused various LNT failures
for example in SingleSource/Benchmarks/Linpack. These failures seem to only
occur when the CFLAA pass is scheduled in our codegen-cleanup passes, which
suggests that the way we call this AA pass is somehow problematic. As this pass
is not of high importance, we drop the pass for now to prevent these failures
from happening. At a later point, we might investigate more in-depth why this
specific usage scenario caused correctness issues.
llvm-svn: 274427
llvm commonly adds a comment to the closing brace of a namespace to indicate
which namespace is closed. clang-tidy provides with llvm-namespace-comment
a handy tool to check for this habit. We use it to ensure we consitently use
namespace comments in Polly.
There are slightly different styles in how namespaces are closed in LLVM. As
there is no large difference between the different comment styles we go for the
style clang-tidy suggests by default.
To reproduce this fix run:
for i in `ls tools/polly/lib/*/*.cpp`; \
clang-tidy -checks='-*,llvm-namespace-comment' -p build $i -fix \
-header-filter=".*"; \
done
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273621
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273436
Instead of using 0 or NULL use the C++11 nullptr symbol when referencing null
pointers.
This cleanup was suggested by Eugene Zelenko <eugene.zelenko@gmail.com> in
http://reviews.llvm.org/D21488 and was split out to increase readability.
llvm-svn: 273435
ScalarReplAggregatesPass was deprecated and replaced by SROAPass.
ScalarReplAggregatesPass got finally removed in LLVM commit r272737, hence this
patch is also a compile fix.
llvm-svn: 272783
As part of this simplification we pull complex logic out of the loop body and
skip the previously redundantly executed first loop iteration.
This is a partial recommit of r271514 and r271535 which where in conflict with
the revert in r272483 and consequently also had to be reverted temporarily. The
original patch was contributed by Johannes Doerfert.
This patch is mostly a NFC, but dropping the first loop iteration can sometimes
result in slightly simpler code.
llvm-svn: 272502
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:
- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"
Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.
llvm-svn: 272483
This patch refactors the code generation for divisions. This allows to
always generate a shift for a power-of-two division and to utilize
information about constant divisors in order to truncate the result
type.
llvm-svn: 271898
We now generate runtime checks __after__ the SCoP code generation and
not before, though they are still inserted at the same position int
the code. This allows to modify the runtime check during SCoP code
generation.
llvm-svn: 271894
We now use the minimal necessary bit width for the generated code. If
operations might overflow (add/sub/mul) we will try to adjust the types in
order to ensure a non-wrapping computation. If the type adjustment is not
possible, thus the necessary type is bigger than the type value of
--polly-max-expr-bit-width, we will use assumptions to verify the computation
will not wrap. However, for run-time checks we cannot build assumptions but
instead utilize overflow tracking intrinsics.
llvm-svn: 271878
In case of modulo compared to zero, we need to do signed modulo
operation as unsigned can give different results based on whether the
dividend is negative or not.
This addresses llvm.org/PR27707
Contributed-by: Chris Jenneisch <chrisj@codeaurora.org>
Reviewers: _jdoerfert, grosser, Meinersbur
Differential Revision: http://reviews.llvm.org/D20145
llvm-svn: 271707
Operands of binary operations that might overflow will be temporarily
promoted to i64 again, though that is not a sound solution for the problem.
llvm-svn: 271538
We now have a simple function to adjust/unify the types of two (or three)
operands before an operation that requieres the same type for all operands.
Due to this change we will not promote parameters that are added to i64
anymore if that is not needed.
llvm-svn: 271513
Created a new pass ScopInfoRegionPass. As name suggests, it is a
region pass and it is there to preserve compatibility with our
existing Polly passes. ScopInfoRegionPass will return a SCoP object
for a valid region while the creation of the SCoP stays in the
ScopInfo class.
Contributed-by: Utpal Bora <cs14mtech11017@iith.ac.in>
Reviewed-by: Tobias Grosser <tobias@grosser.es>,
Johannes Doerfert <doerfert@cs.uni-saarland.de>
Differential Revision: http://reviews.llvm.org/D20770
llvm-svn: 271259
Summary:
API-wise `apply` is a somewhat unidiomatic one-off function, and
removing the only(?) use in polly will let me remove it from SCEV's
exposed interface.
Reviewers: jdoerfert, Meinersbur, grosser
Subscribers: grosser, mcrosier, pollydev
Differential Revision: http://reviews.llvm.org/D20779
llvm-svn: 271177
We utilize assumptions on the input to model IR in polyhedral world.
To verify these assumptions we version the code and guard it with a
runtime-check (RTC). However, since the RTCs are themselves generated
from the polyhedral representation we generate them under the same
assumptions that they should verify. In other words, the guarantees
that we try to provide with the RTCs do not hold for the RTCs
themselves. To this end it is necessary to employ a different check
for the RTCs that will verify the assumptions did hold for them too.
Differential Revision: http://reviews.llvm.org/D20165
llvm-svn: 269299
Previously we checked the number of pieces to decide whether or not a
invariant load was to complex to be generated. However, there are
cases when e.g., divisions cause the complexity to spike regardless of
the number of pieces. To this end we now check the number of totally
involved dimensions which will increase with the number of pieces but
also the number of divisions.
llvm-svn: 269045
Min/max expressions are easier to read and can in some cases also result in
more concise IR that is generated as the min/max --- when lowered to a
cmp+select pattern -- commonly has a simpler condition then the ternary
condition isl would normally generate.
llvm-svn: 268855
The check for complexity compares the number of polyhedra in a set,
which are combined by disjunctions (union, "OR"),
not conjunctions (intersection, "AND").
llvm-svn: 268223
If the base pointer of an invariant load is is loaded conditionally, that
condition needs to hold for the invariant load too. The structure of the
program will imply this for domain constraints but not for imprecisions in
the modeling. To this end we will propagate the execution context of base
pointers during code generation and thus ensure the derived pointer does
not access an invalid base pointer.
llvm-svn: 267707
In r247147 we disabled pointer expressions because the IslExprBuilder did not
fully support them. This patch reintroduces them by simply treating them as
integers. The only special handling for pointers that is left detects the
comparison of two address_of operands and uses an unsigned compare.
llvm-svn: 265894
We verify the optimized function now for a long time and it helped to track
down bugs early. This will now also happen for all parallel subfunctions we
generate.
llvm-svn: 265823
The findValues() function did not look through div & srem instructions
that were part of the argument SCEV. However, in different other
places we already look through it. This mismatch caused us to preload
values in the wrong order.
llvm-svn: 265775
If a non-affine region PHI is generated we should not move the insert
point prior to the synthezised value in the same block as we might
split that block at the insert point later on. Only if the incoming
value should be placed in a different block we should change the
insertion point.
llvm-svn: 265132
This pass is not enabled in the default tool chain and currently can run into an
infinite loop, due to other parts of LLVM generating incorrect IR
(http://llvm.org/PR27065) -- which is not executed and consequently does not
seem to disturb other passes. As this pass is not really needed, we can just
drop it to get our build clean.
This fixes the timeout issues in MultiSource/Benchmarks/MiBench/consumer-jpeg
and MultiSource/Benchmarks/mediabench/jpeg/jpeg-6a/cjpeg for
-polly-position=before-vectorizer -polly-process-unprofitable.. Unfortunately,
we are still left with a miscompile in cjpeg.
llvm-svn: 264396
When codegenerating invariant loads in some rare cases we cannot generate code
and bail out. This change ensures that we maintain a valid dominator tree
in these situations. This fixes llvm.org/PR26736
Contributed-by: Matthias Reisinger <d412vv1n@gmail.com>
llvm-svn: 264142
Value merging is only necessary for scalars when they are used outside
of the scop. While an array's base pointer can be used after the scop,
it gets an extra ScopArrayInfo of type MK_Value. We used to generate
phi's for both of them, where one was assuming the reault of the other
phi would be the original value, because it has already been replaced by
the previous phi. This resulted in IR that the current IR verifier
allows, but is probably illegal.
This reduces the number of LNT test-suite fails with
-polly-position=before-vectorizer -polly-process-unprofitable
from 16 to 10.
Also see llvm.org/PR26718.
llvm-svn: 262629
Polly recognizes affine loops that ScalarEvolution does not, in
particular those with loop conditions that depend on hoisted invariant
loads. Check for SCEVAddRec dependencies on such loops and do not
consider their exit values as synthesizable because SCEVExpander would
generate them as expressions that depend on the original induction
variables. These are not available in generated code.
llvm-svn: 262404
In order to speed up compile time and to avoid random timeouts we now
separately track assumptions and restrictions. In this context
assumptions describe parameter valuations we need and restrictions
describe parameter valuations we do not allow. During AST generation
we create a runtime check for both, whereas the one for the
restrictions is negated before a conjunction is build.
Except the In-Bounds assumptions we currently only track restrictions.
Differential Revision: http://reviews.llvm.org/D17247
llvm-svn: 262328
This allows to construct run-time checks for a scop without having to generate
a full AST. This is currently not taken advantage of in Polly itself, but
external users may benefit from this feature.
llvm-svn: 262009
Check the ModRefBehaviour of functions in order to decide whether or
not a call instruction might be acceptable.
Differential Revision: http://reviews.llvm.org/D5227
llvm-svn: 261866
The generated dedicated subregion exit block was assumed to have the same
dominance relation as the original exit block. This is incorrect if the exit
block receives other edges than only from the subregion, which results in that
e.g. the subregion's entry block does not dominate the exit block.
llvm-svn: 261865
Replace Scop::getStmtForBasicBlock and Scop::getStmtForRegionNode, and
add overloads for llvm::Instruction and llvm::RegionNode.
getStmtFor and overloads become the common interface to get the Stmt
that contains something. Named after LoopInfo::getLoopFor and
RegionInfo::getRegionFor.
llvm-svn: 261791
This is also be caught by the function verifier, but disconnected from
the place that produced it. Catch it already at creation to be able to
reason more directly about the cause.
llvm-svn: 261790
This allows other passes and transformations to use some of the existing AST
building infrastructure. This is not yet used in Polly itself.
llvm-svn: 261496
We now always print the reason why the code did not pass the LLVM verifier and
we also allow to disable verfication with -polly-codegen-verify=false. Before
this change the first assertion had generally no information why or what might
have gone wrong and it was also impossible to -view-cfg without recompile. This
change makes debugging bugs that result in incorrect IR a lot easier.
llvm-svn: 261320
After we moved isl_ctx into Scop, we need to free the isl_ctx after
freeing all isl objects, which requires the ScopInfo pass to be freed
at last. But this is not guaranteed by the PassManager, and we need
extra code to free the isl_ctx at the right time.
We introduced a shared pointer to manage the isl_ctx, and distribute
it to all analyses that create isl objects. As such, whenever we free
an analyses with the shared_ptr (and also free the isl objects which
are created by the analyses), we decrease the (shared) reference
counter of the shared_ptr by 1. Whenever the reference counter reach
0 in the releaseMemory function of an analysis, that analysis will
be the last one that hold any isl objects, and we can safely free the
isl_ctx with that analysis.
Differential Revision: http://reviews.llvm.org/D17241
llvm-svn: 261100
We now distinguish invariant loads to the same memory location if they
have different types. This will cause us to pre-load an invariant
location once for each type that is used to access it. However, we can
thereby avoid invalid casting, especially if an array is accessed
though different typed/sized invariant loads.
This basically reverts the changes in r260023 but keeps the test
cases.
llvm-svn: 260045
We also disable this feature by default, as there are still some issues in
combination with invariant load hoisting that slipped through my initial
testing.
llvm-svn: 260025
Always use access-instruction pointer type to load the invariant values.
Otherwise mismatches between ScopArrayInfo element type and memory access
element type will result in invalid casts. These type mismatches are after
r259784 a lot more common and also arise with types of different size, which
have not been handled before.
Interestingly, this change actually simplifies the code, as we now have only
one code path that is always taken, rather then a standard code path for the
common case and a "fixup" code path that replaces the standard code path in
case of mismatching types.
llvm-svn: 260009
This allows code such as:
void multiple_types(char *Short, char *Float, char *Double) {
for (long i = 0; i < 100; i++) {
Short[i] = *(short *)&Short[2 * i];
Float[i] = *(float *)&Float[4 * i];
Double[i] = *(double *)&Double[8 * i];
}
}
To model such code we use as canonical element type of the modeled array the
smallest element type of all original array accesses, if type allocation sizes
are multiples of each other. Otherwise, we use a newly created iN type, where N
is the gcd of the allocation size of the types used in the accesses to this
array. Accesses with types larger as the canonical element type are modeled as
multiple accesses with the smaller type.
For example the second load access is modeled as:
{ Stmt_bb2[i0] -> MemRef_Float[o0] : 4i0 <= o0 <= 3 + 4i0 }
To support code-generating these memory accesses, we introduce a new method
getAccessAddressFunction that assigns each statement instance a single memory
location, the address we load from/store to. Currently we obtain this address by
taking the lexmin of the access function. We may consider keeping track of the
memory location more explicitly in the future.
We currently do _not_ handle multi-dimensional arrays and also keep the
restriction of not supporting accesses where the offset expression is not a
multiple of the access element type size. This patch adds tests that ensure
we correctly invalidate a scop in case these accesses are found. Both types of
accesses can be handled using the very same model, but are left to be added in
the future.
We also move the initialization of the scop-context into the constructor to
ensure it is already available when invalidating the scop.
Finally, we add this as a new item to the 2.9 release notes
Reviewers: jdoerfert, Meinersbur
Differential Revision: http://reviews.llvm.org/D16878
llvm-svn: 259784
We support now code such as:
void multiple_types(char *Short, char *Float, char *Double) {
for (long i = 0; i < 100; i++) {
Short[i] = *(short *)&Short[2 * i];
Float[i] = *(float *)&Float[4 * i];
Double[i] = *(double *)&Double[8 * i];
}
}
To support such code we use as element type of the modeled array the smallest
element type of all original array accesses. Accesses with larger types are
modeled as multiple accesses with the smaller type.
For example the second load access is modeled as:
{ Stmt_bb2[i0] -> MemRef_Float[o0] : 4i0 <= o0 <= 3 + 4i0 }
To support jscop-rewritable memory accesses we need each statement instance to
only be assigned a single memory location, which will be the address at which
we load the value. Currently we obtain this address by taking the lexmin of
the access function. We may consider keeping track of the memory location more
explicitly in the future.
llvm-svn: 259587
MemAccInst wraps the common members of LoadInst and StoreInst. Also use
of this class in:
- ScopInfo::buildMemoryAccess
- BlockGenerator::generateLocationAccessed
- ScopInfo::addArrayAccess
- Scop::buildAliasGroups
- Replace every use of polly::getPointerOperand
Reviewers: jdoerfert, grosser
Differential Revision: http://reviews.llvm.org/D16530
llvm-svn: 258947
Ensure that there is at most one phi write access per PHINode and
ScopStmt. In particular, this would be possible for non-affine
subregions with multiple exiting blocks. We replace multiple MAY_WRITE
accesses by one MUST_WRITE access. The written value is constructed
using a PHINode of all exiting blocks. The interpretation of the PHI
WRITE's "accessed value" changed from the incoming value to the PHI like
for PHI READs since there is no unique incoming value.
Because region simplification shuffles around PHI nodes -- particularly
with exit node PHIs -- the PHINodes at analysis time does not always
exist anymore in the code generation pass. We instead remember the
incoming block/value pair in the MemoryAccess.
Differential Revision: http://reviews.llvm.org/D15681
llvm-svn: 258809
Both functions implement the same functionality, with the difference that
getNewScalarValue assumes that globals and out-of-scop scalars can be directly
reused without loading them from their corresponding stack slot. This is correct
for sequential code generation, but causes issues with outlining code e.g. for
OpenMP code generation. getNewValue handles such cases correctly.
Hence, we can replace getNewScalarValue with getNewValue. This is not only more
future proof, but also eliminates a bunch of code.
The only functionality that was available in getNewScalarValue that is lost
is the on-demand creation of scalar values. However, this is not necessary any
more as scalars are always loaded at the beginning of each basic block and will
consequently always be available when scalar stores are generated. As this was
not the case in older versions of Polly, it seems the on-demand loading is just
some older code that has not yet been removed.
Finally, generateScalarLoads also generated loads for values that are loop
invariant, available in GlobalMap and which are preferred over the ones loaded
in generateScalarLoads. Hence, we can just skip the code generation of such
scalar values, avoiding the generation of dead code.
Differential Revision: http://reviews.llvm.org/D16522
llvm-svn: 258799
In Polly, after hoisting loop invariant loads outside loop, the alignment
information for hoisted loads are missing, this patch restore them.
Contributed-by: Lawrence Hu <lawrence@codeaurora.org>
Differential Revision: http://reviews.llvm.org/D16160
llvm-svn: 258105
should perform loop interchanges itself.
This also fixes a bug we see due to the "loop-interchange" pass producing
incorrect IR when compiling linpack-pc.c from the LLVM test-suite with
"-polly-position=before-vectorizer".
Reviewed-by: Tobias Grosser <tobias@grosser.es>
llvm-svn: 257495
getAccessFor does not guarantee a certain access to be returned in case an
instruction is related to multiple accesses. However, in the vector code
generation we want to know the stride of the array access of a store
instruction. By using getArrayAccessFor we ensure we always get the correct
memory access.
This patch fixes a potential bug, but I was unable to produce a failing test
case. Several existing test cases cover this code, but all of them already
passed out of luck (or the specific but not-guaranteed order in which we build
memory accesses).
llvm-svn: 255715
When generating scalar loads/stores separately the vector code has not been
updated. This commit adds code to generate scalar loads for vector code as well
as code to assert in case scalar stores are encountered within a vector loop.
llvm-svn: 255714
When rewriting the access functions of load/store statements, we are only
interested in the actual array memory location. The current code just took
the very first memory access, which could be a scalar or an array access. As
a result, we failed to update access functions even though this was requested
via .jscop.
llvm-svn: 255713
This change should not change the behavior of Polly today, but it allows
external constants to be remapped e.g. when targetting multiple LLVM modules.
llvm-svn: 255506
Over time different vocabulary has been introduced to describe the different
memory objects in Polly, resulting in different - often inconsistent - naming
schemes in different parts of Polly. We now standartize this to the following
scheme:
KindArray, KindValue, KindPHI, KindExitPHI
| ------- isScalar -----------|
In most cases this naming scheme has already been used previously (this
minimizes changes and ensures we remain consistent with previous publications).
The main change is that we remove KindScalar to clearify the difference between
a scalar as a memory object of kind Value, PHI or ExitPHI and a value (former
KindScalar) which is a memory object modeling a llvm::Value.
We also move all documentation to the Kind* enum in the ScopArrayInfo class,
remove the second enum in the MemoryAccess class and update documentation to be
formulated from the perspective of the memory object, rather than the memory
access. The terms "Implicit"/"Explicit", formerly used to describe memory
accesses, have been dropped. From the perspective of memory accesses they
described the different memory kinds well - especially from the perspective of
code generation - but just from the perspective of a memory object it seems more
straightforward to talk about scalars and arrays, rather than explicit and
implicit arrays. The last comment is clearly subjective, though. A less
subjective reason to go for these terms is the historic use both in mailing list
discussions and publications.
llvm-svn: 255467
When introducing separate control flow for the original and optimized code we
introduce now a special 'ExitingBlock':
\ /
EnteringBB
|
SplitBlock---------\
_____|_____ |
/ EntryBB \ StartBlock
| (region) | |
\_ExitingBB_/ ExitingBlock
| |
MergeBlock---------/
|
ExitBB
/ \
This 'ExitingBlock' contains code such as the final_reloads for scalars, which
previously were just added to whichever statement/loop_exit/branch-merge block
had been generated last. Having an explicit basic block makes it easier to
find these constructs when looking at the CFG.
llvm-svn: 255107
Re-run canonicalization passes after Polly's code generation.
The set of passes currently added here are nearly all the passes between
--polly-position=early and --polly-position=before-vectorizer, i.e. all
passes that would usually run after Polly.
In order to run these only if Polly actually modified the code, we add a
function attribute "polly-optimzed" to a function that contains
generated code. The cleanup pass is skipped if the function does not
have this attribute.
There is no support by the (legacy) PassManager to run passes only under
some conditions. One could have wrapped all transformation passes to run
only when CodeGeneration changed the code, but the analyses would run
anyway. This patch creates an independent pass manager. The
disadvantages are that all analyses have to re-run even if preserved and
it does not honor compiler switches like the PassManagerBuilder does.
Differential Revision: http://reviews.llvm.org/D14333
llvm-svn: 254150
Previously, accesses that originate from PHI nodes in the exit block
were registered as SCALAR. In some context they are treated as scalars,
but it makes a difference in others. We used to check whether the
AccessInstruction is a terminator to differentiate the cases.
This patch introduces an MemoryAccess origin EXIT_PHI and a
ScopArrayInfo kind KIND_EXIT_PHI to make this case more explicit. No
behavioural change intended.
Differential Revision: http://reviews.llvm.org/D14688
llvm-svn: 254149
IVs of loops for which the loop header is in the subregion, but not the entire
loop may be incremented outside of the subregion and can consequently not be
kept private to the subregion. Instead, they need to and are modeled as virtual
loops in the iteration domains. As this is the case, generating new subregion
induction variables for such loops is not needed and indeed wrong as they would
hide the virtual induction variables modeled in the scop.
This fixes a miscompile in MultiSource/Benchmarks/Ptrdist/bc and
MultiSource/Benchmarks/nbench/. Thanks Michael and Johannes for their
investiagations and helpful observations regarding this bug.
llvm-svn: 252860
Especially for structs, the SAI object of a base pointer does not
describe all the types that the user might expect when he loads from
that base pointer. While we will still cast integers and pointers we
will now reload the value with the correct type if floating point and
non-floating point values are involved. However, there are now TODOs
where we use bitcasts instead of a proper conversion or reloading.
This fixes bug 25479.
llvm-svn: 252706
We now create all invariant equivalence classes for required invariant loads
instead of creating them on-demand. This way we can check if a parameter
references an invariant load that is actually not executed and was therefor
not materialized. If that happens the parameter is not materialized either.
This fixes bug 25469.
llvm-svn: 252701
Since 252422 we do not only distinguish two ScopArrayInfo kinds, PHI nodes
and others, but work with three kind of ScopArrayInfo objects. SCALAR, PHI and
ARRAY objects. Instead of keeping two boolean flags isPHI and isScalar and
wonder what an ScopArrayInfo object of kind (!isScalar && isPHI) is, we
list now explicitly the three different possible types of memory objects.
This change also allows us to remove the confusing nested pairs that have
been used in ArrayInfoMapTy.
llvm-svn: 252620
In polly the first dimensions of an array as well as all scalars do not carry
any size information. This commit makes this explicit in the interface of
getDimensionSize. Before this commit getDimensionSize(0) returned the size of
the first dimension that carried a size. After this commit getDimensionSize(i)
will either return the size of dimension 'i' or assert in case 'i' does not
carry a size or does not exist at all.
This very same behaviour was already present in getDimensionSizePw(). This
commit also adds assertions that ensure getDimensionSizePw() is called
appropriately.
llvm-svn: 252607
Scalar reloads in the generated entering block were not recognized as
dominating the subregions locks when there were multiple entering
nodes. This resulted in values defined in there not being copied.
As a fix, we unconditionally add the BBMap of the generated entering
node to the generated entry. This fixes part of llvm.org/PR25439.
This reverts 252449 and reapplies r252445. Its test was failing
indeterministically due to r252375 which was reverted in r252522.
llvm-svn: 252540
The dominance of the generated non-affine subregion block was based on
the scop's merge block, therefore resulted in an invalid DominanceTree.
It resulted in some values as assumed to be unusable in the actual
generated exit block.
We detect the case that the exit block has been moved and decide
dominance using the BB at the original exit. If we create another exit
node, that exit nodes is dominated by the one generated from where the
original exit resides. This fixes llvm.org/PR25438 and part of
llvm.org/PR25439.
llvm-svn: 252526
It introduced indeterminism as it was iterating over an address-indexed
hashtable. The corresponding bug PR25438 will be fixed in a successive
commit.
llvm-svn: 252522
This reverts commit 9775824b265e574fc541e975d64d3e270243b59d due to a
failing unit test.
Please check and correct the unit test and commit again.
llvm-svn: 252449
Scalar reloads in the generated entering block were not recognized as
dominating the subregions locks when there were multiple entering
nodes. This resulted in values defined in there not being copied.
As a fix, we unconditionally add the BBMap of the generated entering
node to the generated entry. This fixes part of llvm.org/PR25439.
llvm-svn: 252445
Even if a scalar and memory access have the same base pointer, we cannot use
one SAI object as the type but also the number of dimensions are wrong. For
the attached test case this caused a crash in the invariant load hoisting,
though it could cause various other problems too.
This fixes bug 25428 and a execution time bug in MallocBench/cfrac.
Reported-by: Jeremy Huddleston Sequoia <jeremyhu@apple.com>
llvm-svn: 252422
When we bail out early we make the partially build new code path
practically dead, though it was not unreachable. To remove dominance
problems we now make it not only dead but also prevent the control
flow to join with the original code path, thus allow to use original
values after the SCoP without any PHI nodes.
This fixes bug 25447.
llvm-svn: 252420
The bail out in r252412 left the code generation without verifying the (so
far) generated IR. This will change now and ensure we always run the
verifier.
Suggested-by: Tobias Grosser <tobias@grosser.es>
llvm-svn: 252419
While the program cannot cause a dependence cycle between invariant
loads, additional constraints (e.g., to ensure finite loops) can
introduce them. It is hard to detect them in the SCoP description,
thus we will only check for them at code generation time. If such a
recursion is detected we will bail out the code generation and place a
"false" runtime check to guarantee the original code is used.
This fixes bug 25443.
llvm-svn: 252412
After loop versioning, a dominance check of a non-affine subregion's
exit node causes the dominance check to always fail on any block in the
subregion if it shares the same exit block with the scop. The
subregion's exit block has become polly_merge_new_and_old, which also
receives the control flow of the generated code. This would cause that
any value for implicit stores is assumed to be not from the scop.
We check dominance with the generated exit node instead.
This fixes llvm.org/PR25438
llvm-svn: 252375
Remove all the implicit ilist iterator conversions from polly, in
preparation for making them illegal in ADT. There was one oddity I came
across: at line 95 of lib/CodeGen/LoopGenerators.cpp, there was a
post-increment `Builder.GetInsertPoint()++`.
Since it was a no-op, I removed it, but I admit I wonder if it might be
a bug (both before and after this change)? Perhaps it should be a
pre-increment?
llvm-svn: 252357
We were adding all generated values in non-affine subregions to be used
for the subregions generated exit block. The thought was that only
values that are dominating the original exit block can be used there.
But it is possible for synthesizable values to be expanded in any
block. If the same values is also used for implicit writes, it would
try to reuse already synthesized values even if not dominating the exit
block.
The fix is to only add values to the list of values usable in the exit
block only if it is dominating the exit block. This fixes
llvm.org/PR25412.
llvm-svn: 252301
For generating scalar writes of non-affine subregions, all except phi
writes are generated in the exit block. The phi writes are generated in
the incoming block for which we errornously used the same BBMap. This
can conflict if a value for one block is synthesized, and then reused
for another block which is not dominated by the first block. This is
fixed by using block-specific BBMaps for phi writes.
llvm-svn: 252172
To simplify and correct the preloading of a base pointer origin, e.g.,
the base pointer for the current indirect invariant load, we now just
check if there is an invariant access class that involves the base
pointer of the current class.
llvm-svn: 251962
If a base pointer of a preloaded value has a base pointer origin, thus it is
an indirect invariant load, we have to make sure the base pointer origin is
preloaded first.
llvm-svn: 251946
If a base pointer load is preloaded, we have change the base pointer of
the derived SAI. However, as the derived SAI relationship is is
coarse grained, we need to check if we actually preloaded the base
pointer or a different element of the base pointer SAI array.
llvm-svn: 251881
We remove -polly-detect-unprofitable and -polly-no-early-exit. Both have been
superseeded by -polly-process-unprofitable and were only kept as aliases for
our buildbots to continue to work. As all buildbots have been moved to the new
options, we can now remove the old ones for good.
llvm-svn: 251787
These maps are only needed during the construction of a single region statement.
Clearing them is important, as we otherwise get an assert in case some of the
referenced values are erased before the RegionGenerator is deleted.
llvm-svn: 251341
Such PHI nodes can not only appear in the ExitBlock of the Scop, but indeed
any scalar PHI node above the scop and used in the scop is modeled as scalar
read access.
llvm-svn: 251198
This change adds code to directly code-generate multi-exit PHI nodes, instead
of trying to reuse the EscapeMap infrastructure for this. Using escape maps
adds a level of indirection that is hard to understand and - more importantly -
breaks in certain cases.
Specifically, the original code relied on simplifyRegion() to split the original
PHI node in two PHI nodes, one merging the values coming from within the scop
and a second that merges the first PHI node with the values that come from
outside the scop. To generate code the first PHI node is then just handled like
any other in-scop value that is used somewhere outside the scop. This fails for
the case where all values from inside the scop are identical, as the first PHI
node is in such cases automatically simplified and eliminated by LLVM right at
construction. As a result, there is no instruction that can be pass to the
EscapeMap handling, which means the references in the second PHI node are not
updated and may still reference values from within the original scop that do not
dominate it.
Our new code iterates directly over all modeled ScopArrayInfo objects that
represent multi-exit PHI nodes and generates code for them without relying on
the EscapeMap infrastructure. Hence, it works also for the case where the first
PHI node is eliminated.
llvm-svn: 251191
New values were always synthesized in the block of the instruction
that needed them. This is incorrect for PHI node whose' value must be
defined in the respective incoming block. This patch temporarily moves
the builder's insert point to the incoming block while synthesizing phi
node arguments.
This fixes PR25241 (http://llvm.org/bugs/show_bug.cgi?id=25241)
llvm-svn: 250693
Sorting is replaced by a demand driven code generation that will pre-load a
value when it is needed or, if it was not needed before, at some point
determined by the order of invariant accesses in the program. Only in very
little cases this demand driven pre-loading will kick in, though it will
prevent us from generating faulty code. An example where it is needed is
shown in:
test/ScopInfo/invariant_loads_complicated_dependences.ll
Invariant loads that appear in parameters but are not on the top-level (e.g.,
the parameter is not a SCEVUnknown) will now be treated correctly.
Differential Revision: http://reviews.llvm.org/D13831
llvm-svn: 250655
Polly can now be used as a analysis only tool as long as the code
generation is disabled. However, we do not have an alternative to the
independent blocks pass in place yet, though in the relevant cases
this does not seem to impact the performance much. Nevertheless, a
virtual alternative that allows the same transformations without
changing the input region will follow shortly.
llvm-svn: 250652
Expressing this in terms of BlockGenerator::getOrCreateAlloca(const
ScopArrayInfo *Array) does not work as the MemoryAccess BasePtr is in case of
invariant load hoisting different to the ScopArrayInfo BasePtr. Until this is
investigated and fixed, we move back to code that just uses the baseptr of
MemoryAccess.
llvm-svn: 250637
This allows the caller to get the alloca locations of an array without the
need to thank if Array is a PHI or a non-PHI Array. We directly make use of this
in BlockGenerator::getOrCreateAlloca(MemoryAccess &Access).
llvm-svn: 250628
Instead of generating implicit loads within basic blocks, put them
before the instructions of the statment itself, including non-affine
subregions. The region's entry node is dominating all blocks in the
region and therefore the loaded value will be available there.
Implicit writes in block-stmts were already stored back at the end of
the block. Now, also generate the stores of non-affine subregions when
leaving the statement, i.e. in the exiting block.
This change is required for array-mapped implicits ("De-LICM") to
ensure that there are no dependencies of demoted scalars within
statments. Statement load all required values, operator on copied in
registers, and then write back the changed value to the demoted memory.
Lifetimes analysis within statements becomes unecessary.
Differential Revision: http://reviews.llvm.org/D13487
llvm-svn: 250625
Instead of checking at code generation time for each ScopStmt if a scalar has
external uses, we just iterate over the ScopArrayInfo descriptions we have and
check each of these for possible external uses.
Besides being somehow clearer, this approach has the benefit that we will always
create valid LLVM-IR even in case we disable the code generation of ScopStmt
bodies e.g. for testing purposes.
llvm-svn: 250608
Helper functions in the BlockGenerators.h/cpp introduce dependences
from the frontend to the backend of Polly. As they are used in
ScopDetection, ScopInfo, etc. we move them to the ScopHelper file.
llvm-svn: 249919
If a (assumed) invariant location is loaded multiple times we
generated a parameter for each location. However, this caused compile
time problems for several benchmarks (e.g., 445_gobmk in SPEC2006 and
BT in the NAS benchmarks). Additionally, the code we generate is
suboptimal as we preload the same location multiple times and perform
the same checks on all the parameters that refere to the same value.
With this patch we consolidate the invariant loads in three steps:
1) During SCoP initialization required invariant loads are put in
equivalence classes based on their pointer operand. One
representing load is used to generate a parameter for the whole
class, thus we never generate multiple parameters for the same
location.
2) During the SCoP simplification we remove invariant memory
accesses that are in the same equivalence class. While doing so
we build the union of all execution domains as it is only
important that the location is at least accessed once.
3) During code generation we only preload one element of each
equivalence class with the unified execution domain. All others
are mapped to that preloaded value.
Differential Revision: http://reviews.llvm.org/D13338
llvm-svn: 249853
This patch allows invariant loads to be used in the SCoP description,
e.g., as loop bounds, conditions or in memory access functions.
First we collect "required invariant loads" during SCoP detection that
would otherwise make an expression we care about non-affine. To this
end a new level of abstraction was introduced before
SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and
ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide
if we want a load inside the region to be optimistically assumed
invariant or not. If we do, it will be marked as required and in the
SCoP generation we bail if it is actually not invariant. If we don't
it will be a non-affine expression as before. At the moment we
optimistically assume all "hoistable" (namely non-loop-carried) loads
to be invariant. This causes us to expand some SCoPs and dismiss them
later but it also allows us to detect a lot we would dismiss directly
if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also
allow potential aliases between optimistically assumed invariant loads
and other pointers as our runtime alias checks are sound in case the
loads are actually invariant. Together with the invariant checks this
combination allows to handle a lot more than LICM can.
The code generation of the invariant loads had to be extended as we
can now have dependences between parameters and invariant (hoisted)
loads as well as the other way around, e.g.,
test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll
First, it is important to note that we cannot have real cycles but
only dependences from a hoisted load to a parameter and from another
parameter to that hoisted load (and so on). To handle such cases we
materialize llvm::Values for parameters that are referred by a hoisted
load on demand and then materialize the remaining parameters. Second,
there are new kinds of dependences between hoisted loads caused by the
constraints on their execution. If a hoisted load is conditionally
executed it might depend on the value of another hoisted load. To deal
with such situations we sort them already in the ScopInfo such that
they can be generated in the order they are listed in the
Scop::InvariantAccesses list (see compareInvariantAccesses). The
dependences between hoisted loads caused by indirect accesses are
handled the same way as before.
llvm-svn: 249607
Value maps are created and used in many places and it is not always
possible to include CodeGen/Blockgenerators.h. To this end, ValueMapT
now lives in the ScopHelper.h which does not have any dependences itself.
This patch also replaces uses of different other value map types with
the ValueMapT.
llvm-svn: 249606
Do not use "Map[Key] == nullptr" to check if a Key is in the map, but use
"Map.find(Key) == Map.end()". Map[Key] always adds Key into the map, a
side-effect we do not want.
Found by inspection. This is hard to test outside of a targetted unit test,
which seems too much overhead for this individual issue.
llvm-svn: 249544
This single option replaces -polly-detect-unprofitable and -polly-no-early-exit
and is supposed to be the only option that disables compile-time heuristics that
aim to bail out early on scops that are believed to not benefit from Polly
optimizations.
Suggested-by: Johannes Doerfert
llvm-svn: 249426
When the ScopAnnotator was a class member variable some of the maps it contains
have not been properly cleared. As a result we had dangling pointers to
llvm::Value(s) which got detected by the AssertingVH we recently added.
No test case as this issue is hard to reproduce reliably as subsequent
optimizations need to delete some of the llvm::Values we still keep in our
lists.
llvm-svn: 249269
The use of const qualified Value pointers prevents the use of AssertingVH. We
could probably think of adding const support to AssertingVH, but as const
correctness seems to currently provide limited benefit in Polly, we do not do
this yet.
llvm-svn: 249266
There have been various places where llvm::DenseMap<const llvm::Value *,
llvm::Value *> types have been defined, but all types have been expected to be
identical. We make this more clear by consolidating the different types and use
BlockGenerator::ValueMapT wherever there is a need for types to match
BlockGenerator::ValueMapT.
llvm-svn: 249264
By using asserting value handles, we will get assertions when we forget to clear
any of the Value maps instead of difficult to debug undefined behavior.
llvm-svn: 249237
If a value is globally mapped (IslNodeBuilder::ValueMap) and
referenced in the code that will be put into a subfunction, we hand
down the new value to the subfunction.
This patch also removes code that handed down all invariant loads to
the subfunction. Instead, only needed invariant loads are given to the
subfunction. There are two possible reasons for an invariant load to
be handed down:
1) The invariant load is used in a block that is placed in the
subfunction but which is not the parent of the load. In this
case, the scalar access that will read the loaded value, will
cause its base pointer (the preloaded value) to be handed down to
the subfunction.
2) The invariant load is defined and used in a block that is placed
in the subfunction. With this patch we will hand down the
preloaded value to the subfunction as the invariant load is
globally mapped to that value.
llvm-svn: 249126
Because we handle more than SCEV does it is not possible to rewrite an
expression on the top-level using the SCEVParameterRewriter only. With
this patch we will do the rewriting on demand only and also
recursively, thus not only on the top-level.
llvm-svn: 248916
Instructions which we can synthesis from a SCEV expression are not
generated directly, but only when they are used as an operand of
another instruction. This avoids generating unnecessary instructions
and works more reliably than first inserting them and then deleting
them later on.
This commit was reverted in r248860 due to a remaining miscompile, where
we forgot to synthesis the operand values that were referenced from scalar
writes. test/Isl/CodeGen/scalar-store-from-same-bb.ll tests that we do this
now correctly.
llvm-svn: 248900
Before we unconditinoally forced all users outside the SCoP to use
the preloaded value. However, if the SCoP is not executed due to the
runtime checks, we need to use the original value because it might not
be invariant in the first place.
llvm-svn: 248881
As a first step in the direction of assumed invariant loads (loads
that are not written in some context) we now detect and hoist
definitively invariant loads. These invariant loads will be preloaded
in the code generation and used in the optimized version of the SCoP.
If the load is only conditionally executed the preloaded version will
also only be executed under the same condition, hence we will never
access memory that wouldn't have been accessed otherwise. This is also
the most distinguishing feature to licm.
As hoisting can make statements empty we will simplify the SCoP and
remove empty statements that would otherwise cause artifacts in the
code generation.
Differential Revision: http://reviews.llvm.org/D13194
llvm-svn: 248861
This reverts commit 07830c18d789ee72812d5b5b9b4f8ce72ebd4207.
The commit broke at least one test in lnt,
MultiSource/Benchmarks/Ptrdist/bc/number.c
was miss compiled and the test produced a wrong result.
One Polly test case that was added later was adjusted too.
llvm-svn: 248860
Every once in a while we see code that accesses memory with different types,
e.g. to perform operations on a piece of memory using type 'float', but to copy
data to this memory using type 'int'. Modeled in C, such codes look like:
void foo(float A[], float B[]) {
for (long i = 0; i < 100; i++)
*(int *)(&A[i]) = *(int *)(&B[i]);
for (long i = 0; i < 100; i++)
A[i] += 10;
}
We already used the correct types during normal operations, but fall back to our
detected type as soon as we import changed memory access functions. For these
memory accesses we may generate invalid IR due to a mismatch between the element
type of the array we detect and the actual type used in the memory access. To
address this issue, we always cast the newly created address of a memory access
back to the type of the memory access where the address will be used.
llvm-svn: 248781
Instructions which we can synthesis from a SCEV expression are not generated
directly, but only when they are used as an operand of another instruction. This
avoids generating unnecessary instruction and works more reliably than first
inserting them and then deleting them later on.
Suggested-by: Johannes Doerfert <doerfert@cs.uni-saarland.de>
Differential Revision: http://reviews.llvm.org/D13208
llvm-svn: 248712
This patch allows switch instructions with affine conditions in the
SCoP. Also switch instructions in non-affine subregions are allowed.
Both did not require much changes to the code, though there was some
refactoring needed to integrate them without code duplication.
In the llvm-test suite the number of profitable SCoPs increased from
135 to 139 but more importantly we can handle more benchmarks and user
inputs without preprocessing.
Differential Revision: http://reviews.llvm.org/D13200
llvm-svn: 248701
We now only delete trivially dead instructions in the BB we copy (copyBB), but
not in any other BB. Only for copyBB we know that there will _never_ be any
future uses of instructions that have no use after copyBB has been generated.
Other instructions in the AST that have been generated by IslNodeBuilder may
look dead at the moment, but may possibly still be referenced by GlobalMaps. If
we delete them now, later uses would break surprisingly.
We do not have a test case that breaks due to us deleting too many instructions.
This issue was found by inspection.
llvm-svn: 248688
The changes affect methods that are part of the Pass interface and
include:
- Comments that describe the methods purpose.
- A consistent use of the keywords override and virtual.
Additionally, the printScop method is now optional and removed from
SCoP passes that do not implement it.
llvm-svn: 248685
After having generated a new user statement a couple of inefficient or
trivially dead instructions may remain. This commit runs instruction
simplification over the newly generated blocks to ensure unneeded
instructions are removed right away.
This commit does adds simplification for non-affine subregions which was not
yet part of 248681.
llvm-svn: 248683
After having generated a new user statement a couple of inefficient or trivially
dead instructions may remain. This commit runs instruction simplification over
the newly generated blocks to ensure unneeded instructions are removed right
away.
This commit does not yet add simplification for non-affine subregions.
llvm-svn: 248681
This commit basically reverts r246427 but still solves the issue
tackled by that commit. Instead of emitting initialization code in the
beginning of the start block we now generate parallel code in its own
block and thereby guarantee separation. This is necessary as we cannot
generate code for hoisted loads prior to the start block but it still
needs to be placed prior to everything else.
llvm-svn: 248674
There are three possible reasons to add a memory memory access: For explicit load and stores, for llvm::Value defs/uses, and to emulate PHI nodes (the latter two called implicit accesses). Previously MemoryAccess only stored IsPHI. Register accesses could be identified through the isScalar() method if it was no IsPHI. isScalar() determined the number of dimensions of the underlaying array, scalars represented by zero dimensions.
For the work on de-LICM, implicit accesses can have more than zero dimensions, making the distinction of isScalars() useless, hence now stored explicitly in the MemoryAccess. Instead, we replace it by isImplicit() and avoid the term scalar for zero-dimensional arrays as it might be confused with llvm::Value which are also often referred to as scalars (or alternatively, as registers).
No behavioral change intended, under the condition that it was impossible to create explicit accesses to zero-dimensional "arrays".
llvm-svn: 248616
All MemoryAccess objects will be owned by ScopInfo::AccFuncMap which
previously stored the IRAccess objects. Instead of creating new
MemoryAccess objects, the already created ones are reused, but their
order might be different now. Some fields of IRAccess and MemoryAccess
had the same meaning and are merged.
This is the last step of fusioning TempScopInfo.{h|cpp} and
ScopInfo.{h.cpp}. Some refactoring might still make sense.
Differential Revision: http://reviews.llvm.org/D12843
llvm-svn: 248024
The TempScopInfo (-polly-analyze-ir) pass is removed and its work taken
over by ScopInfo (-polly-scops). Several tests depend on
-polly-analyze-ir and use -polly-scops instead which for the moment
prints the output of both passes. This again is not expected by some
other tests, especially those with negative searches, which have been
adapted.
Differential Version: http://reviews.llvm.org/D12694
llvm-svn: 247288
This prepares for a series of patches that merges TempScopInfo into ScopInfo to
reduce Polly's code complexity. Only ScopInfo.{cpp|h} will be left thereafter.
Moving the code of TempScopInfo in one commit makes the mains diffs simpler to
understand.
In detail, merging the following classes is planned:
TempScopInfo into ScopInfo
TempScop into Scop
IRAccess into MemoryAccess
Only moving code, no functional changes intended.
Differential Version: http://reviews.llvm.org/D12693
llvm-svn: 247274
Not all users of our IslNodeBuilder will attach scheduling information to the
AST in the same way IslAstInfo is doing it today. By going through a virtual
function when extracting the schedule of an AST node other users can provide
their own functions for extract scheduling information in case they attach
scheduling information in a different way to the AST nodes.
No functional change for Polly itself intended.
llvm-svn: 247126
While we do not need to model PHI nodes in the region exit (as it is not part
of the SCoP), we need to prepare for the case that the exit block is split in
code generation to create a single exiting block. If this will happen, hence
if the region did not have a single exiting block before, we will model the
operands of the PHI nodes as escaping scalars in the SCoP.
Differential Revision: http://reviews.llvm.org/D12051
llvm-svn: 247078
Certain backends, e.g. NVPTX, do not support '.' in function names. Hence,
we ensure all '.' are replaced by '_' when generating function names for
subfunctions. For the current OpenMP code generation, this is not strictly
necessary, but future uses cases (e.g. GPU offloading) need this issue to be
fixed.
llvm-svn: 246980
When this option is enabled, Polly will emit printf calls for each scalar
load/and store which dump the scalar value loaded/stored at run time.
This patch also refactors the RuntimeDebugBuilder to use variadic templates
when generating CPU printfs. As result, it now becomes easier to print
strings that consist of a set of arguments. Also, as a single printf
call is emitted, it is more likely for such strings to be emitted atomically
if executed multi-threaded.
llvm-svn: 246941
Some of the structures are renamed, subfunction introduced to clarify the
individual steps and comments are added describing their functionality.
llvm-svn: 246929
In the common case, the access functions are not modified, hence there is no
need to obtain the IslAstBuild context at all. This should not only be minimally
faster, but this also allows the IslNodeBuilder to work on asts that are not
annotated with isl_ast_builds as long as the memory accesses are not modified.
llvm-svn: 246928
By inspection the update of the GlobalMaps in the RegionGenerator seems unneed,
and is removed as also no test cases fail when dropping this. Johannes Doerfert
confirmed that this is indeed save:
"I think that code was needed when we did not use the scalar codegen by default.
Now everything defined in a non-affine region should be communicated via memory
and reloaded in the user block. Hence, we should be good removing this code."
llvm-svn: 246926
When computing the index expressions for new, multi-dimensional memory accesses
these new index expressions may reference original llvm::Values that are not
transfered into the OpenMP subfunction. Using GlobalMap we now replace
references to such values with the rewritten values that have e.g. been passed
to the OpenMP subfunction.
llvm-svn: 246923
The GlobalMap variable used in BlockGenerator should always reference the same
list througout the entire code generation, hence we can make it a member
variable to avoid passing it around through every function call.
History: Before we switched to the SCEV based code generation the GlobalMap
also contained a mapping form old to new induction variables, hence it was
different for each ScopStmt, which is why we passed it as function argument
to copyStmt. The new SCEV based code generation now uses a separate mapping
called LTS -> LoopToSCEV that maps each original loop to a new loop iteration
variable provided as a SCEVExpr. The GlobalMap is currently mostly used for
OpenMP code generation, where references to parameters in the original function
need to be rewritten to the locations of these variables after they have been
passed to the subfunction.
Suggested-by: Johannes Doerfert <doerfert@cs.uni-saarland.de>
llvm-svn: 246920
Our OpenMP code generation generated part of its launching code directly into
the start basic block and without this change the scalar initialization was
run _after_ the OpenMP threads have been launched. This resulted in
uninitialized scalar values to be used.
llvm-svn: 246427
Scalar dependences between scop statements have caused troubles during parallel
code generation as we did not pass on the new stack allocation created for such
scalars to the parallel subfunctions. This change now detects all scalar
reads/writes in parallel subfunctions, creates the allocas for these scalar
objects, passes the resulting memory locations to the subfunctions and ensures
that within the subfunction requests for these memory locations will return the
rewritten values.
Johannes suggested as a future optimization to privatizing some of the scalars
in the subfunction.
llvm-svn: 246414
We already modeled read-only dependences to scalar values defined outside the
scop as memory reads and also generated read accesses from the corresponding
alloca instructions that have been used to pass these scalar values around
during code generation. However, besides for PHI nodes that have already been
handled, we failed to store the orignal read-only scalar values into these
alloc. This commit extends the initialization of scalar values to all read-only
scalar values used within the scop.
llvm-svn: 246394
The current code really tries hard to use getNewScalarValue(), which checks if
not the original value, but a possible copy or demoted value needs to be stored.
In this calling context it seems, that we _always_ use the ScalarValue that
comes from the incoming PHI node, but never any other value. As also no test
cases fail, it seems right to just drop this call to getNewScalarValue and
remove the parameters that are not needed any more.
Johannes suggested that code like this might be needed for parallel code
generation with offloading, but it was still unclear if/what exactly would
be needed. As the parallel code generation does currently not support scalars
at all, we will remove this code for now and add relevant code back when
complitng the support of scalars in the parallel code generation.
Reviewers: jdoerfert
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D12470
llvm-svn: 246389
Our code generation currently does not support scalar references to metadata
values. Hence, it would crash if we try to model scalar dependences to metadata
values. Fortunately, for one of the common uses, debug information, we can
for now just ignore the relevant intrinsics and consequently the issue of how
to model scalar dependences to metadata.
llvm-svn: 246388
This commit drops some dead code. Specifically, there is no need to initialize
the virtual memory locations of scalars in BlockGenerator::handleOutsideUsers,
the function that initalizes the escape map that keeps track of out-of-scope
uses of scalar values. We already model instructions inside the scop that
are used outside the scope (escaping instructions) as scalar memory writes at
the position of the instruction. As a result, the virtual memory location of
this instructions is already initialized when code-generating the corresponding
virtual scalar write and consequently does not need to be initialized later on
when generating the set of escaping values.
Code references:
In TempScopInfo::buildScalarDependences we detect scalar cross-statement
dependences for all instructions (including PHIs) that have uses outside of the
scop's region:
// Check whether or not the use is in the SCoP.
if (!R->contains(UseParent)) {
AnyCrossStmtUse = true;
continue;
}
We use this information in TempScopInfo::buildAccessFunctions were we build
scalar write memory accesses for all these instructions:
if (!isa<StoreInst>(Inst) &&
buildScalarDependences(Inst, &R, NonAffineSubRegion)) {
// If the Instruction is used outside the statement, we need to build the
// write access.
IRAccess ScalarAccess(IRAccess::MUST_WRITE, Inst, ZeroOffset, 1, true,
Inst);
Functions.push_back(std::make_pair(ScalarAccess, Inst));
}
Reviewers: jdoerfert
Subscribers: pollydev, llvm-commits
Differential Revision: http://reviews.llvm.org/D12472
llvm-svn: 246383
For external users, the memory locations into which we generate scalar values
may be of interest. This change introduces two functions that allow to obtain
(or create) the AllocInsts for a given BasePointer.
We use this change to simplify the code in BlockGenerators.
llvm-svn: 246285
This change allows the BlockGenerator to be reused in contexts where we want to
provide different/modified isl_ast_expressions, which are not only changed to
a different access relation than the original statement, but which may indeed
be different for each code-generated instance of the statement.
We ensure testing of this feature by moving Polly's support to import changed
access functions through a jscop file to use the BlockGenerators support for
generating arbitary access functions if provided.
This commit should not change the behavior of Polly for now. The diff is rather
large, but most changes are due to us passing the NewAccesses hash table through
functions. This style, even though rather verbose, matches what is done
throughout the BlockGenerator with other per-statement properties.
llvm-svn: 246144
Instead of generating code for an empty assumed context we bail out
early. As the number of assumptions we generate increases this becomes
more and more important. Additionally, this change will allow us to
hide internal contexts that are only used in runtime checks e.g., a
boundary context with constraints not suited for simplifications.
llvm-svn: 245540
To make alias scope metadata generation work in OpenMP mode we now provide
the ScopAnnotator with information about the base pointer rewrite that happens
when passing arrays into the OpenMP subfunction.
llvm-svn: 245451