replaceWithUniquedUnresolved
replaceWithUniquedUnresolvedChangedOperand
=>
replaceWithUniquedResolvingOperand
replaceWithUniquedChangingOperand
I find the new names less confusing; they're also more accurate. Sorry
for the churn.
llvm-svn: 233759
Uniqued nodes have more complete registration with
`ReplaceableMetadataImpl` so that they can update themselves when
operands change. Fix a bug where `MDNode::replaceWithUniqued()` wasn't
enabling these callbacks.
The two most obvious ways missing callbacks causes problems is that
auto-resolution fails and re-uniquing (on changed operands) just doesn't
happen. I've added tests for both -- in both cases, I confirmed that
the final check was failing before the fix.
rdar://problem/20365935
llvm-svn: 233751
This patch fixes MCJIT::addGlobalMapping by changing the implementation of the
ExecutionEngineState class. The new implementation maintains a bidirectional
mapping between symbol names (std::strings) and addresses (uint64_ts), rather
than a mapping between Value*s and void*s.
This has fix has been made for backwards compatibility, however the strongly
preferred way to resolve unknown symbols is by writing a custom
RuntimeDyld::SymbolResolver (formerly RTDyldMemoryManager) and overriding the
findSymbol method. The addGlobalMapping method is a hangover from the legacy JIT
(which has was removed in 3.6), and may be deprecated in a future release as
part of a clean-up of the ExecutionEngine interface.
Patch by Murat Bolat. Thanks Murat!
llvm-svn: 233747
Move over the remaining (somewhat complicated) check from
`DISubprogram::Verify()`. I suspect this check could be optimized --
e.g., it would be nice not to do another full traversal here -- but it's
not exactly obvious how. For now, just bring it over as is.
Once we have a better model for the "canonical" subprogram of a
`Function`, we should enforce that all `!dbg` attachments lead to the
canonical one.
llvm-svn: 233663
Since I'm slowly gutting `DISubprogram` and `DICompileUnit`, update the
`CloneFunc` unit tests to call `verifyModule()` (where the checks are
moving to).
llvm-svn: 233602
Add operand checks for `MDLexicalBlock` and `MDLexicalBlockFile`. Like
`MDLocalVariable` and `MDLocation`, these nodes always require a scope.
There was no test bitrot to fix here (just updated the serialization
tests in test/Assembler/mdlexicalblock.ll).
llvm-svn: 233561
Check operands of `MDSubprogram`s in the verifier, and update the
accessors and factory functions to use more specific types.
There were a lot of broken testcases, which I fixed in r233466. If you
have out-of-tree tests for debug info, you probably need similar changes
to the ones I made there.
llvm-svn: 233559
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
llvm-svn: 233509
Add verify checks for `MDType` subclasses and for `MDCompileUnit`.
These new checks don't yet incorporate everything from `Verify()`, but
at least they sanity check the operands. Also downcast accessors as
possible.
A lot of these accessors can't be downcast as far as we'd like because
of arrays of typed objects (stored in a generic `MDTuple`) and
`MDString`-based type references. Eventually I'll port over `DIRef<>`
and `DITypedArray<>` from `DebugInfo.h` to clean those up as well.
Updated bitrotted testcases separately in r233415 and r233443 to reduce
churn on the off-chance this needs to be reverted.
llvm-svn: 233446
Check fields from `MDLocalVariable` and `MDGlobalVariable` and change
the accessors to downcast to the right types. `getType()` still returns
`Metadata*` since it could be an `MDString`-based reference.
Since local variables require non-null scopes, I also updated `LLParser`
to require a `scope:` field.
A number of testcases had grown bitrot and started failing with this
patch; I committed them separately in r233349. If I just broke your
out-of-tree testcases, you're probably hitting similar problems (so have
a look there).
llvm-svn: 233389
Check accessors of `MDLocation`, and change them to `cast<>` down to the
right types. Also add type-safe factory functions.
All the callers that handle broken code need to use the new versions of
the accessors (`getRawScope()` instead of `getScope()`) that still
return `Metadata*`. This is also necessary for things like
`MDNodeKeyImpl<MDLocation>` (in LLVMContextImpl.h) that need to unique
the nodes when their operands might still be forward references of the
wrong type.
In the `Value` hierarchy, consumers that handle broken code use
`getOperand()` directly. However, debug info nodes have a ton of
operands, and their order (even their existence) isn't stable yet. It's
safer and more maintainable to add an explicit "raw" accessor on the
class itself.
llvm-svn: 233322
Summary:
When the arch is given as "arm" clang uses the default target CPU from
LLVM to determine what the real arch should be (i.e. "arm" becomes
"armv4t" because LLVM's getARMCPUForArch falls back to "arm7tdmi").
Default to "cortex-a8" so that we end up with "armv7" in clang.
the nacl-direct.c test in clang also covers this case.
Differential Revision: http://reviews.llvm.org/D8589
llvm-svn: 233321
APInt uses Knuth's D algorithm for long division. In rare cases the
implementation applied a transformation that was not needed.
Added unit tests for long division. KnuthDiv() procedure is fully covered.
There is a case in APInt::divide() that I believe is never used (marked with
a comment) as all users of divide() handle trivial cases earlier.
Patch by Pawel Bylica!
http://reviews.llvm.org/D8448
llvm-svn: 233312
The changes to InstCombine (& SCEV) do seem a bit silly - it doesn't make
anything obviously better to have the caller access the pointers element
type (the thing I'm trying to remove) than the GEP itself, but it's a
helpful migration step. This will allow me to more obviously lock down
GEP (& Load, etc) API usage, then fix all the code that accesses pointer
element types except the places that need to be removed (most of the
InstCombines) anyway - at which point I'll need to just remove all that
code because it won't be meaningful anymore (there will be no pointer
types, so no bitcasts to combine)
SCEV looks like it'll need some restructuring - we'll have to do a bit
more work for GEP canonicalization, since it'll depend on how it's used
if we can even manage to canonicalize it to a non-ugly GEP. I guess we
can do some fun stuff like voting (do 2 out of 3 load from the GEP with
a certain type that gives a pretty GEP? Does every typed use of the GEP
use either a specific type or a generic type (i8*, etc)?)
llvm-svn: 233131
Summary:
This change splits `makeICmpRegion` into `makeAllowedICmpRegion` and
`makeSatisfyingICmpRegion` with slightly different contracts. The first
one is useful for determining what values some expression //may// take,
given that a certain `icmp` evaluates to true. The second one is useful
for determining what values are guaranteed to //satisfy// a given
`icmp`.
Reviewers: nlewycky
Reviewed By: nlewycky
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8345
llvm-svn: 232575
Allow unresolved nodes through the `MapMetadata()` if
`RF_NoModuleLevelChanges`, since there's no remapping to do anyway.
This fixes PR22929. I'll add a clang test as a follow-up.
llvm-svn: 232449
Replumb the `AsmWriter` so that `Metadata::print()` is generally useful.
(Similarly change `Metadata::printAsOperand()`.)
- `SlotTracker` now has a mode where all metadata will be correctly
numbered when initializing a `Module`. Normally, `Metadata` only
referenced from within `Function`s gets numbered when the `Function`
is incorporated.
- `Metadata::print()` and `Metadata::printAsOperand()` (and
`Metadata::dump()`) now take an optional `Module` argument. When
provided, `SlotTracker` is initialized with the new mode, and the
numbering will be complete and consistent for all calls to `print()`.
- `Value::print()` uses the new `SlotTracker` mode when printing
intrinsics with `MDNode` operands, `MetadataAsValue` operands, or the
bodies of functions. Thus, metadata numbering will be consistent
between calls to `Metadata::print()` and `Value::print()`.
- `Metadata::print()` (and `Metadata::dump()`) now print the full
definition of `MDNode`s:
!5 = !{!6, !"abc", !7}
This matches behaviour for `Value::print()`, which includes the name
of instructions.
- Updated call sites in `Verifier` to call `print()` instead of
`printAsOperand()`.
All this, so that `Verifier` can print out useful failure messages that
involve `Metadata` for PR22777.
Note that `Metadata::printAsOperand()` previously took an optional
`bool` and `Module` operand. The former was cargo-culted from
`Value::printAsOperand()` and wasn't doing anything useful. The latter
didn't give consistent results (without the new `SlotTracker` mode).
llvm-svn: 232275
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
CloudABI is a POSIX-like runtime environment built around the concept of
capability-based security. More details:
https://github.com/NuxiNL/cloudlibc
CloudABI uses its own ELFOSABI number. This number has been allocated by
the maintainers of ELF a couple of days ago.
Reviewed by: echristo
llvm-svn: 231681
Multiplication is not dependent on signedness, so just treating
all input ranges as unsigned is not incorrect. However it will cause
overly pessimistic ranges (such as full-set) when used with signed
negative values.
Teach multiply to try to interpret its inputs as both signed and
unsigned, and then to take the most specific (smallest population)
as its result.
llvm-svn: 231483
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
Accidentally committed a few more of these cleanup changes than
intended. Still breaking these out & tidying them up.
This reverts commit r231135.
llvm-svn: 231136
There doesn't seem to be any need to assert that iterator assignment is
between iterators over the same node - if you want to reuse an iterator
variable to iterate another node, that's perfectly acceptable. Just
don't mix comparisons between iterators into disjoint sequences, as
usual.
llvm-svn: 231135
Without this, use of this copy ctor is deprecated in C++11 due to the
presence of a user-declared dtor.
Marking the class final is just a little extra security that there are
no further derived classes that may then end up using the intermediate
base class's copy assignment operator and cause slicing to occur.
I didn't bother marking the other (non-test) base class final, since it
has reference members so it won't have any implicit assignment operators
anyway. Open to ideas on that, though.
We probably want a warning about use of a slicing assignment operator,
then I wouldn't worry so much about marking the class as final.
llvm-svn: 231114
Add the final bits of API that `DIBuilder` needs before the new nodes
can be moved into place.
- Add `MDType::clone()` and `MDType::setFlags()` to support
`DIBuilder::createTypeWithFlags()`.
- Add `MDBasicType::get()` overload that just requires a tag and a
name, as a convenience for `DIBuilder::createUnspecifiedType()`.
- Add `MDLocalVariable::withInline()` and
`MDLocalVariable::withoutInline()` to support
`llvm::createInlinedVariable()` and
`llvm::cleanseInlinedVariable()`.
(Somehow these got lost inside the "move into place" patch I'm about to
commit -- better to commit separately!)
llvm-svn: 231079
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
When reading a yaml::SequenceTraits object, YAMLIO does not report an
error if the yaml item is not a sequence. Instead, YAMLIO reads an
empty sequence. For example:
---
seq:
foo: 1
bar: 2
...
If `seq` is a SequenceTraits object, then reading the above yaml will
yield `seq` as an empty sequence.
Fix this to report an error for the above mapping ("not a sequence")
Patch by William Fisher. Thanks!
llvm-svn: 230976
With initializer lists there is a really neat idiomatic way to write
this, 'ArrayRef.equals({1, 2, 3, 4, 5})'. Remove the equal method which
always had a hard limit on the number of arguments. I considered
rewriting it with variadic templates but that's not really a good fit
for a function with homogeneous arguments.
'ArrayRef == {1, 2, 3, 4, 5}' would've been even more awesome, but C++11
doesn't allow init lists with binary operators.
llvm-svn: 230907