Commit Graph

32 Commits

Author SHA1 Message Date
Uday Bondhugula 4ba8c9147d Automated rollback of changelist 232717775.
PiperOrigin-RevId: 232807986
2019-03-29 16:19:33 -07:00
River Riddle 90d10b4e00 NFC: Rename the 'for' operation in the AffineOps dialect to 'affine.for'. The is the second step to adding a namespace to the AffineOps dialect.
PiperOrigin-RevId: 232717775
2019-03-29 16:17:59 -07:00
River Riddle bf9c381d1d Remove InstWalker and move all instruction walking to the api facilities on Function/Block/Instruction.
PiperOrigin-RevId: 232388113
2019-03-29 16:12:59 -07:00
River Riddle b499277fb6 Remove remaining usages of OperationInst in lib/Transforms.
PiperOrigin-RevId: 232323671
2019-03-29 16:10:53 -07:00
River Riddle a3d9ccaecb Replace the walkOps/visitOperationInst variants from the InstWalkers with the Instruction variants.
PiperOrigin-RevId: 232322030
2019-03-29 16:10:24 -07:00
River Riddle 5052bd8582 Define the AffineForOp and replace ForInst with it. This patch is largely mechanical, i.e. changing usages of ForInst to OpPointer<AffineForOp>. An important difference is that upon construction an AffineForOp no longer automatically creates the body and induction variable. To generate the body/iv, 'createBody' can be called on an AffineForOp with no body.
PiperOrigin-RevId: 232060516
2019-03-29 16:06:49 -07:00
Chris Lattner b42bea215a Change AffineApplyOp to produce a single result, simplifying the code that
works with it, and updating the g3docs.

PiperOrigin-RevId: 231120927
2019-03-29 15:40:38 -07:00
River Riddle 36babbd781 Change the ForInst induction variable to be a block argument of the body instead of the ForInst itself. This is a necessary step in converting ForInst into an operation.
PiperOrigin-RevId: 231064139
2019-03-29 15:40:23 -07:00
River Riddle 75c21e1de0 Wrap cl::opt flags within passes in a category with the pass name. This improves the help output of tools like mlir-opt.
Example:

dma-generate options:

  -dma-fast-mem-capacity                 - Set fast memory space  ...
  -dma-fast-mem-space=<uint>             - Set fast memory space  ...

loop-fusion options:

  -fusion-compute-tolerance=<number>     - Fractional increase in  ...
  -fusion-maximal                        - Enables maximal loop fusion

loop-tile options:

  -tile-size=<uint>                      - Use this tile size for  ...

loop-unroll options:

  -unroll-factor=<uint>                  - Use this unroll factor  ...
  -unroll-full                           - Fully unroll loops
  -unroll-full-threshold=<uint>          - Unroll all loops with  ...
  -unroll-num-reps=<uint>                - Unroll innermost loops  ...

loop-unroll-jam options:

  -unroll-jam-factor=<uint>              - Use this unroll jam factor ...

PiperOrigin-RevId: 231019363
2019-03-29 15:39:38 -07:00
River Riddle 451869f394 Add cloning functionality to Block and Function, this also adds support for remapping successor block operands of terminator operations. We define a new BlockAndValueMapping class to simplify mapping between cloned values.
PiperOrigin-RevId: 230768759
2019-03-29 15:34:20 -07:00
Uday Bondhugula 6e4f3e40c7 Fix outdated comments
PiperOrigin-RevId: 229300301
2019-03-29 15:16:08 -07:00
Chris Lattner dffc589ad2 Extend InstVisitor and Walker to handle arbitrary CFG functions, expand the
Function::walk functionality into f->walkInsts/Ops which allows visiting all
instructions, not just ops.  Eliminate Function::getBody() and
Function::getReturn() helpers which crash in CFG functions, and were only kept
around as a bridge.

This is step 25/n towards merging instructions and statements.

PiperOrigin-RevId: 227243966
2019-03-29 14:46:58 -07:00
Chris Lattner 456ad6a8e0 Standardize naming of statements -> instructions, revisting the code base to be
consistent and moving the using declarations over.  Hopefully this is the last
truly massive patch in this refactoring.

This is step 21/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227178245
2019-03-29 14:44:30 -07:00
Chris Lattner 315a466aed Rename BasicBlock and StmtBlock to Block, and make a pass cleaning it up. I did not make an effort to rename all of the 'bb' names in the codebase, since they are still correct and any specific missed once can be fixed up on demand.
The last major renaming is Statement -> Instruction, which is why Statement and
Stmt still appears in various places.

This is step 19/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227163082
2019-03-29 14:43:58 -07:00
Chris Lattner 69d9e990fa Eliminate the using decls for MLFunction and CFGFunction standardizing on
Function.

This is step 18/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227139399
2019-03-29 14:43:13 -07:00
Chris Lattner 4c05f8cac6 Merge CFGFuncBuilder/MLFuncBuilder/FuncBuilder together into a single new
FuncBuilder class.  Also rename SSAValue.cpp to Value.cpp

This is step 12/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227067644
2019-03-29 14:40:22 -07:00
Chris Lattner 3f190312f8 Merge SSAValue, CFGValue, and MLValue together into a single Value class, which
is the new base of the SSA value hierarchy.  This CL also standardizes all the
nomenclature and comments to use 'Value' where appropriate.  This also eliminates a large number of cast<MLValue>(x)'s, which is very soothing.

This is step 11/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227064624
2019-03-29 14:40:06 -07:00
Chris Lattner d613f5ab65 Refactor MLFunction to contain a StmtBlock for its body instead of inheriting
from it.  This is necessary progress to squaring away the parent relationship
that a StmtBlock has with its enclosing if/for/fn, and makes room for functions
to have more than one block in the future.  This also removes IfClause and ForStmtBody.

This is step 5/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 226936541
2019-03-29 14:36:35 -07:00
Chris Lattner 1301f907a1 Refactor ForStmt: having it contain a StmtBlock instead of subclassing
StmtBlock.  This is more consistent with IfStmt and also conceptually makes
more sense - a forstmt "isn't" its body, it contains its body.

This is step 1/N towards merging BasicBlock and StmtBlock.  This is required
because in the new regime StmtBlock will have a use list (just like BasicBlock
does) of operands, and ForStmt already has a use list for its induction
variable.

This is a mechanical patch, NFC.

PiperOrigin-RevId: 226684158
2019-03-29 14:35:19 -07:00
Jacques Pienaar cc9a6ed09d Initialize Pass with PassID.
The passID is not currently stored in Pass but this avoids the unused variable warning. The passID is used to uniquely identify passes, currently this is only stored/used in PassInfo.

PiperOrigin-RevId: 220485662
2019-03-29 13:50:34 -07:00
Jacques Pienaar 6f0fb22723 Add static pass registration
Add static pass registration and change mlir-opt to use it. Future work is needed to refactor the registration for PassManager usage.

Change build targets to alwayslink to enforce registration.

PiperOrigin-RevId: 220390178
2019-03-29 13:49:34 -07:00
Uday Bondhugula 8201e19e3d Introduce memref bound checking.
Introduce analysis to check memref accesses (in MLFunctions) for out of bound
ones. It works as follows:

$ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir

/tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1
      %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
           ^
/tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1
      %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
           ^
/tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2
      %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
           ^
/tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2
      %x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
           ^
/tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1
      %y = load %B[%idy] : memref<128 x i32>
           ^
/tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1
      %y = load %B[%idy] : memref<128 x i32>
           ^
#map0 = (d0, d1) -> (d0, d1)
#map1 = (d0, d1) -> (d0 * 128 - d1)
mlfunc @test() {
  %0 = alloc() : memref<9x9xi32>
  %1 = alloc() : memref<128xi32>
  for %i0 = -1 to 9 {
    for %i1 = -1 to 9 {
      %2 = affine_apply #map0(%i0, %i1)
      %3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32>
      %4 = affine_apply #map1(%i0, %i1)
      %5 = load %1[%4] : memref<128xi32>
    }
  }
  return
}

- Improves productivity while manually / semi-automatically developing MLIR for
  testing / prototyping; also provides an indirect way to catch errors in
  transformations.

- This pass is an easy way to test the underlying affine analysis
  machinery including low level routines.

Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256.

While on this:

- create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/

- fix a bug in AffineAnalysis.cpp::toAffineExpr

TODO: extend to non-constant loop bounds (straightforward). Will transparently
work for all accesses once floordiv, mod, ceildiv are supported in the
AffineMap -> FlatAffineConstraints conversion.
PiperOrigin-RevId: 219397961
2019-03-29 13:46:08 -07:00
Chris Lattner adbba70d82 Simplify FunctionPass to eliminate the CFGFunctionPass/MLFunctionPass
distinction.  FunctionPasses can now choose to get called on all functions, or
have the driver split CFG/ML Functions up for them.  NFC.

PiperOrigin-RevId: 218775885
2019-03-29 13:40:05 -07:00
Lei Zhang 52a0e58bdb Change typedef to using to be consistent across the codebase
Google C++ style guide also prefers using to typedef.

PiperOrigin-RevId: 218541849
2019-03-29 13:37:55 -07:00
Jacques Pienaar 764fd035b0 Split BuiltinOps out of StandardOps.
* Move Return, Constant and AffineApply out into BuiltinOps;
* BuiltinOps are always registered, while StandardOps follow the same dynamic registration;
* Kept isValidX in MLValue as we don't have a verify on AffineMap so need to keep it callable from Parser (I wanted to move it to be called in verify instead);

PiperOrigin-RevId: 216592527
2019-03-29 13:28:12 -07:00
Nicolas Vasilache 1d3e7e2616 [MLIR] AffineMap value type
This CL applies the same pattern as AffineExpr to AffineMap: a simple struct
that acts as the storage is allocated in the bump pointer. The AffineMap is
immutable and accessed everywhere by value.

PiperOrigin-RevId: 216445930
2019-03-29 13:26:24 -07:00
Nicolas Vasilache ce2edea135 [MLIR] Cleanup AffineExpr
This CL introduces a series of cleanups for AffineExpr value types:
1. to make it clear that the value types should be used, the pointer
AffineExpr types are put in the detail namespace. Unfortunately, since the
value type operator-> only forwards to the underlying pointer type, we
still
need to expose this in the include file for now;
2. AffineExprKind is ok to use, it thus comes out of detail and thus of
AffineExpr
3. getAffineDimExpr, getAffineSymbolExpr, getAffineConstantExpr are
similarly
extracted as free functions and their naming is mande consistent across
Builder, MLContext and AffineExpr
4. AffineBinaryOpEx::simplify functions are made into static free
functions.
In particular it is moved away from AffineMap.cpp where it does not belong
5. operator AffineExprType is made explicit
6. uses the binary operators everywhere possible
7. drops the pointer usage everywhere outside of AffineExpr.cpp,
MLIRContext.cpp and AsmPrinter.cpp

PiperOrigin-RevId: 216207212
2019-03-29 13:24:45 -07:00
Nicolas Vasilache 544f5e7a9b [MLIR] Remove uses of AffineExpr* outside of IR
This CL uniformizes the uses of AffineExprWrap outside of IR.
The public API of AffineExpr builder is modified to only use AffineExprWrap.
A few places access AffineExprWrap.expr, this is only while the API is in
transition to easily keep track (i.e. make expr private and let the compiler
track the errors).

Parser.cpp exhibits patterns that are dependent on nullptr values so
converting it is left for another CL.

PiperOrigin-RevId: 215642005
2019-03-29 13:22:35 -07:00
Uday Bondhugula ab4797229c Extend loop unroll/unroll-and-jam to affine bounds + refactor related code.
- extend loop unroll-jam similar to loop unroll for affine bounds
- extend both loop unroll/unroll-jam to deal with cleanup loop for non multiple
  of unroll factor.
- extend promotion of single iteration loops to work with affine bounds
- fix typo bugs in loop unroll
- refactor common code b/w loop unroll and loop unroll-jam
- move prototypes of non-pass transforms to LoopUtils.h
- add additional builder methods.
- introduce loopUnrollUpTo(factor) to unroll by either factor or trip count,
  whichever is less.
- remove Statement::isInnermost (not used for now - will come back at the right
  place/in right form later)

PiperOrigin-RevId: 213471227
2019-03-29 13:15:06 -07:00
Uday Bondhugula 37a3f638ea Misc changes to builder's and Transforms/ API to allow code generation.
- add builder method for ReturnOp
- expose API from Transforms/ to work on specific ML statements (do this for
  LoopUnroll, LoopUnrollAndJam)
- add MLFuncBuilder::getForStmtBodyBuilder, ::getBlock

PiperOrigin-RevId: 213074178
2019-03-29 13:14:09 -07:00
Jacques Pienaar fb3116f59e Add PassResult and have passes return PassResult to indicate failure/success.
For FunctionPass's for passes that want to stop upon error encountered.

PiperOrigin-RevId: 213058651
2019-03-29 13:13:55 -07:00
Uday Bondhugula 64812a56c7 Extend getConstantTripCount to deal with a larger subset of loop bounds; make loop
unroll/unroll-and-jam more powerful; add additional affine expr builder methods

- use previously added analysis/simplification to infer multiple of unroll
  factor trip counts, making loop unroll/unroll-and-jam more general.

- for loop unroll, support bounds that are single result affine map's with the
  same set of operands. For unknown loop bounds, loop unroll will now work as
  long as trip count can be determined to be a multiple of unroll factor.

- extend getConstantTripCount to deal with single result affine map's with the
  same operands. move it to mlir/Analysis/LoopAnalysis.cpp

- add additional builder utility methods for affine expr arithmetic
  (difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to
  use the utility methods.

- move affine analysis routines to AffineAnalysis.cpp/.h from
  AffineStructures.cpp/.h.

- Rename LoopUnrollJam to LoopUnrollAndJam to match class name.

- add an additional simplification for simplifyFloorDiv, simplifyCeilDiv

- Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does
  not have operands. Operands are passed to it through affine_apply, from loop
  bounds/if condition's, etc., operands are stored in the latter.

This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU
code generation, and can move to other analyses/transformations.

Loop nests like these are now unrolled without any cleanup loop being generated.

  for %i = 1 to 100 {
    // unroll factor 4: no cleanup loop will be generated.
    for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) {
      %x = "foo"(%j) : (affineint) -> i32
    }
  }

  for %i = 1 to 100 {
    // unroll factor 4: no cleanup loop will be generated.
    for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) {
      %y = "foo"(%j) : (affineint) -> i32
    }
  }

  for %i = 1 to 100 {
    for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) {
      %x = "foo"() : () -> i32
    }
  }

TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor
changes).

PiperOrigin-RevId: 212661212
2019-03-29 13:13:00 -07:00