This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
This reverts commit r278048. Something changed between the last time I
built this--it takes awhile on my ridiculously slow and ancient
computer--and now that broke this.
llvm-svn: 278053
Summary:
Based on two patches by Michael Mueller.
This is a target attribute that causes a function marked with it to be
emitted as "hotpatchable". This particular mechanism was originally
devised by Microsoft for patching their binaries (which they are
constantly updating to stay ahead of crackers, script kiddies, and other
ne'er-do-wells on the Internet), but is now commonly abused by Windows
programs to hook API functions.
This mechanism is target-specific. For x86, a two-byte no-op instruction
is emitted at the function's entry point; the entry point must be
immediately preceded by 64 (32-bit) or 128 (64-bit) bytes of padding.
This padding is where the patch code is written. The two byte no-op is
then overwritten with a short jump into this code. The no-op is usually
a `movl %edi, %edi` instruction; this is used as a magic value
indicating that this is a hotpatchable function.
Reviewers: majnemer, sanjoy, rnk
Subscribers: dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D19908
llvm-svn: 278048
Shifts with a uniform but non-constant count were considered very expensive to
vectorize, because the splat of the uniform count and the shift would tend to
appear in different blocks. That made the splat invisible to ISel, and we'd
scalarize the shift at codegen time.
Since r201655, CodeGenPrepare sinks those splats to be next to their use, and we
are able to select the appropriate vector shifts. This updates the cost model to
to take this into account by making shifts by a uniform cheap again.
Differential Revision: https://reviews.llvm.org/D23049
llvm-svn: 277782
This patch adds costs for the vectorized implementations of CTPOP, the default values were seriously underestimating the cost of these and was encouraging vectorization on targets where serialized use of POPCNT would be much better.
Differential Revision: https://reviews.llvm.org/D22456
llvm-svn: 276104
Make some AVX and AVX512 cast costs more precise.
Based on part of a patch by Elena Demikhovsky (D15604).
Differential Revision: http://reviews.llvm.org/D22064
llvm-svn: 275106
This is "cvtdq2ps" which does not appear to be particularly slow on any CPU
according to Agner's tables. Choosing "5" as a cost here as suggested in:
https://llvm.org/bugs/show_bug.cgi?id=21356
...but it seems very conservative given that the instruction is fully pipelined,
and I think these costs are supposed to model throughput.
Note that related costs are also most likely too high, but this fixes PR21356
and partly fixes PR28434.
llvm-svn: 274658
Cast cost tables are now sorted, for each cast type, lexicographically on
[source base type, source vector width, dest base type, base vector width].
llvm-svn: 274653
The BSWAP of vector types is quite efficiently implemented using vector shuffles on SSE/AVX targets, we should reflect the typical cost of this to encourage vectorization.
Differential Revision: http://reviews.llvm.org/D21521
llvm-svn: 273217
The costs are somewhat hand-wavy, but should be much closer to the truth
than what we get from BasicTTI.
Differential Revision: http://reviews.llvm.org/D21156
llvm-svn: 272406
By making pointer extraction from a vector more expensive in the cost model,
we avoid the vectorization of a loop that is very likely to be memory-bound:
https://llvm.org/bugs/show_bug.cgi?id=27826
There are still bugs related to this, so we may need a more general solution
to avoid vectorizing obviously memory-bound loops when we don't have HW gather
support.
Differential Revision: http://reviews.llvm.org/D20601
llvm-svn: 270729
As discussed on PR24888, until SSE42 we don't have access to PCMPGTQ for v2i64 comparisons, but the cost models don't reflect this, resulting in over-optimistic vectorizaton.
This patch adds SSE2 'base level' costs that match what a typical target is capable of and only reduces the v2i64 costs at SSE42.
Technically SSE41 provides a PCMPEQQ v2i64 equality test, but as getCmpSelInstrCost doesn't give us a way to discriminate between comparison test types we can't easily make use of this, otherwise we could split the cost of integer equality and greater-than tests to give better costings of each.
Differential Revision: http://reviews.llvm.org/D20057
llvm-svn: 268972
Summary:
rL256194 transforms truncations between vectors of integers into PACKUS/PACKSS
operations during DAG combine. This generates better code for truncate, so cost
of truncate needs to be changed but looks like it got changed only in SSE2 table
Whereas this change is also applicable for SSE4.1, so the cost of truncate needs
to be changed for that as well. Cost of “TRUNCATE v16i32 to v16i8” & “TRUNCATE
v16i16 to v16i8” should be same in SSE4.1 & SSE2 table. Removing their cost from
SSE4.1, so it will fall back to SSE2.
Reviewers: Simon Pilgrim
llvm-svn: 267123
This code was creating a new type in the global context, regardless
of which context the user is sitting in, what can possibly go wrong?
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266275
The irony of this patch is that one CPU that is affected is AMD Jaguar, and Jaguar
has a completely double-pumped AVX implementation. But getting the cost model to
reflect that is a much bigger problem. The small goal here is simply to improve on
the lie that !AVX2 == SandyBridge.
Differential Revision: http://reviews.llvm.org/D18000
llvm-svn: 263069
Use AVX1 FP instructions (vmaskmovps/pd) in place of the AVX2 int instructions (vpmaskmovd/q).
Differential Revision: http://reviews.llvm.org/D16528
llvm-svn: 258675
The cost is calculated for all X86 targets. When gather/scatter instruction
is not supported we calculate the cost of scalar sequence.
Differential revision: http://reviews.llvm.org/D15677
llvm-svn: 256519
This patch transforms truncation between vectors of integers into
X86ISD::PACKUS/PACKSS operations during DAG combine. We don't do it in
lowering phase because after type legalization, the original truncation
will be turned into a BUILD_VECTOR with each element that is extracted
from a vector and then truncated, and from them it is difficult to do
this optimization. This greatly improves the performance of truncations
on some specific types.
Cost table is updated accordingly.
Differential revision: http://reviews.llvm.org/D14588
llvm-svn: 256194
This allows "icmp ugt %a, 4294967295" and "icmp uge %a, 4294967296" to be optimized into right shifts by 32 which can fold the immediate into the shift instruction. These patterns show up with some regularity in real code.
Unfortunately, since getImmCost can't see the icmp predicate we can't be tell if we're only catching these specific cases.
llvm-svn: 256126
Previously in the conversion cost table there are no entries for integer-integer
conversions on SSE2. This will result in imprecise costs for certain vectorized
operations. This patch adds those entries for SSE2 and SSE4.1. The cost numbers
are counted from the result of running llc on the new test case in this patch.
Differential revision: http://reviews.llvm.org/D15132
llvm-svn: 255315
I checked and updated the cost of AVX-512 conversion operations. Added cost of conversion operations in DQ mode.
Conversion of illegal types that requires vector split is not calculated right now (like for other X86 targets).
Differential Revision: http://reviews.llvm.org/D15074
llvm-svn: 254494
The masked intrinsics support all integer and floating point data types. I added the pointer type to this list.
Added tests for CodeGen and for Loop Vectorizer.
Updated the Language Reference.
Differential Revision: http://reviews.llvm.org/D14150
llvm-svn: 253544
This also lets us remove the versions of the functions that took a statically sized array as we can rely on ArrayRef implicit conversion now.
llvm-svn: 251490
This avoid mentioning the table name an extra time and allows the lookup to be done directly in the ifs by relying on the bool conversion of the pointer.
While there make use of ArrayRef and std::find_if.
llvm-svn: 251382
When the target does not support these intrinsics they should be converted to a chain of scalar load or store operations.
If the mask is not constant, the scalarizer will build a chain of conditional basic blocks.
I added isLegalMaskedGather() isLegalMaskedScatter() APIs.
Differential Revision: http://reviews.llvm.org/D13722
llvm-svn: 251237
Clang runtime failure was reported.
Assertion failed: (isExtended() && "Type is not extended!"), function getTypeForEVT
I'll need to add a proper handling for PointerType in masked load/store intrinsics.
llvm-svn: 250995
Originally I planned to use the same interface for masked gather/scatter and set isConsecutive to "false" in this case.
Now I'm implementing masked gather/scatter and see that the interface is inconvenient. I want to add interfaces isLegalMaskedGather() / isLegalMaskedScatter() instead of using the "Consecutive" parameter in the existing interfaces.
Differential Revision: http://reviews.llvm.org/D13850
llvm-svn: 250686
Most importantly, this keeps constant hoisting from preventing instruction selections ability to turn an AND with 0xffffffff into a move into a 32-bit subregister.
llvm-svn: 249370
The XOP shifts just have logical/arithmetic versions and the left/right shifts are controlled by whether the value is positive/negative. Because of this I've added new X86ISD nodes instead of trying to force them to use the existing shift nodes.
Additionally Excavator cores (bdver4) support XOP and AVX2 - meaning that it should use the AVX2 shifts when it can and fall back to XOP in other cases.
Differential Revision: http://reviews.llvm.org/D8690
llvm-svn: 248878
rather than 'unsigned' for their costs.
For something like costs in particular there is a natural "negative"
value, that of savings or saved cost. As a consequence, there is a lot
of code that subtracts or creates negative values based on cost, all of
which is prone to awkwardness or bugs when dealing with an unsigned
type. Similarly, we *never* want these values to wrap, as that would
cause Very Bad code generation (likely percieved as an infinite loop as
we try to emit over 2^32 instructions or some such insanity).
All around 'int' seems a much better fit for these basic metrics. I've
added asserts to ensure that at least the TTI interface never returns
negative numbers here. If we ever have a use case for negative numbers,
we can remove this, but this way a bug where someone used '-1' to
produce a 'very large' cost will be caught by the assert.
This passes all tests, and is also UBSan clean.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D11741
llvm-svn: 244080
This patch vectorizes the v2i64/v4i64 ASHR shift operations - the last remaining integer vector shifts that are still being transferred to/from the scalar unit to be completed.
Differential Revision: http://reviews.llvm.org/D11439
llvm-svn: 243569
Reordered the data tables at the top and placed the lookups after. The first stage in the yak shaving necessary to get more accurate costs for a variety of targets given the recent improvements to SINT_TO_FP/UINT_TO_FP/SIGN_EXTEND vector lowering.
llvm-svn: 242643
While the v4i32 shl operation is already vectorized using a cvttps2dq/pmulld pattern, the lshr/ashr opeations are still scalarized.
This patch adds vectorization support for non-uniform v4i32 shift operations - it splats constant shift amounts to allow them to use the immediate sse shift instructions, or extracts/zero-extends non-constant shift amounts. The individual results are then blended together.
Differential Revision: http://reviews.llvm.org/D11063
llvm-svn: 241989
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
This patch adds vectorization support for uniform constant i64 arithmetic shift right operators.
Differential Revision: http://reviews.llvm.org/D9645
llvm-svn: 241514
This checks subtarget feature compatibility for inlining by verifying
that the callee is a strict subset of the caller's features. This includes
the cpu as part of the subtarget we can get via the incoming functions as
the backend takes CPUs as feature sets.
This allows us to inline things like:
int foo() { return baz(); }
int __attribute__((target("sse4.2"))) bar() {
return foo();
}
so that generic code can be inlined into specialized functions.
llvm-svn: 241221