Until AVX512DQ we only support i64/vXi64 sitofp conversion as scalars.
This patch sees if the sign bit extends far enough that we can truncate to a i32 type and then perform sitofp without loss of precision.
Differential Revision: https://reviews.llvm.org/D24345
llvm-svn: 281502
Recommitting after fixing AsmParser Initialization.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281336
Optimized (truncate (assertzext x) to i1) and anyext i1 to i8/16/32.
Optimization of this patterns is a one more step towards i1 optimization on AVX-512.
Differential Revision: https://reviews.llvm.org/D24456
llvm-svn: 281302
That confuses e.g. machine basic block placement, which then doesn't
realize that control can fall through a block that ends with a conditional
tail call. Instead, isBranch=1 should be set.
Also, mark EFLAGS as used by these instructions.
llvm-svn: 281281
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281249
r280832 added 32-bit support for emitting conditional tail-calls, but
dropped imp-used parameter registers. This went unnoticed until
r281113, which added 64-bit support, as this is only exposed with
parameter passing via registers.
Don't drop the imp-used parameters.
llvm-svn: 281223
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
Summary:
I want to separate out the notions of invariance and dereferenceability
at the MI level, so that they correspond to the equivalent concepts at
the IR level. (Currently an MI load is MI-invariant iff it's
IR-invariant and IR-dereferenceable.)
First step is renaming this function.
Reviewers: chandlerc
Subscribers: MatzeB, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D23370
llvm-svn: 281125
This extends the optimization in r280832 to also work for 64-bit. The only
quirk is that we can't do this for 64-bit Windows (yet).
Differential Revision: https://reviews.llvm.org/D24423
llvm-svn: 281113
The x64 ABI has two major function types:
- frame functions
- leaf functions
A frame function is one which requires a stack frame. A leaf function
is one which does not. A frame function may or may not have a frame
pointer.
A leaf function does not require a stack frame and may never modify SP
except via a return (RET, tail call via JMP).
A frame function which has a frame pointer is permitted to use the LEA
instruction in the epilogue, a frame function without which doesn't
establish a frame pointer must use ADD to adjust the stack pointer epilogue.
Fun fact: Leaf functions don't require a function table entry
(associated PDATA/XDATA).
llvm-svn: 281006
The REX prefix should be used on indirect jmps, but not direct ones.
For direct jumps, the unwinder looks at the offset to determine if
it's inside the current function.
Differential Revision: https://reviews.llvm.org/D24359
llvm-svn: 281003
And associated commits, as they broke the Thumb bots.
This reverts commit r280935.
This reverts commit r280891.
This reverts commit r280888.
llvm-svn: 280967
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
1. https://reviews.llvm.org/D23932 (Clang test)
2. https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 280888
The patch is to fix PR30298, which is caused by rL272694. The solution is to
bail out if the target has no SSE2.
Differential Revision: https://reviews.llvm.org/D24288
llvm-svn: 280837
When branching to a block that immediately tail calls, it is possible to fold
the call directly into the branch if the call is direct and there is no stack
adjustment, saving one byte.
Example:
define void @f(i32 %x, i32 %y) {
entry:
%p = icmp eq i32 %x, %y
br i1 %p, label %bb1, label %bb2
bb1:
tail call void @foo()
ret void
bb2:
tail call void @bar()
ret void
}
before:
f:
movl 4(%esp), %eax
cmpl 8(%esp), %eax
jne .LBB0_2
jmp foo
.LBB0_2:
jmp bar
after:
f:
movl 4(%esp), %eax
cmpl 8(%esp), %eax
jne bar
.LBB0_1:
jmp foo
I don't expect any significant size savings from this (on a Clang bootstrap I
saw 288 bytes), but it does make the code a little tighter.
This patch only does 32-bit, but 64-bit would work similarly.
Differential Revision: https://reviews.llvm.org/D24108
llvm-svn: 280832
The previous commit (r280368 - https://reviews.llvm.org/D23313) does not cover AVX-512F, KNL set.
FNEG(x) operation is lowered to (bitcast (vpxor (bitcast x), (bitcast constfp(0x80000000))).
It happens because FP XOR is not supported for 512-bit data types on KNL and we use integer XOR instead.
I added pattern match for integer XOR.
Differential Revision: https://reviews.llvm.org/D24221
llvm-svn: 280785
We need to bitcast the index operand to a floating point type so that it matches the result type. If not then the passthru part of the DAG will be a bitcast from the index's original type to the destination type. This makes it very difficult to match. The other option would be to add 5 sets of patterns for every other possible type.
llvm-svn: 280696
The code is now written in terms of source and dest classes with feature checks inside each type of copy instead of having separate functions for each feature set.
llvm-svn: 280673