The retpoline mitigation for variant 2 of CVE-2017-5715 inhibits the
branch predictor, and as a result it can lead to a measurable loss of
performance. We can reduce the performance impact of retpolined virtual
calls by replacing them with a special construct known as a branch
funnel, which is an instruction sequence that implements virtual calls
to a set of known targets using a binary tree of direct branches. This
allows the processor to speculately execute valid implementations of the
virtual function without allowing for speculative execution of of calls
to arbitrary addresses.
This patch extends the whole-program devirtualization pass to replace
certain virtual calls with calls to branch funnels, which are
represented using a new llvm.icall.jumptable intrinsic. It also extends
the LowerTypeTests pass to recognize the new intrinsic, generate code
for the branch funnels (x86_64 only for now) and lay out virtual tables
as required for each branch funnel.
The implementation supports full LTO as well as ThinLTO, and extends the
ThinLTO summary format used for whole-program devirtualization to
support branch funnels.
For more details see RFC:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120672.html
Differential Revision: https://reviews.llvm.org/D42453
llvm-svn: 327163
Summary: We create a ConstantDataSequential (ConstantDataArray or ConstantDataVector) to avoid creating a Constant for each element in an array of constants. But them in AsmPrinter, we do create a ConstantFP for each element in the ConstantDataSequential. This triggers excessive memory use when generating large global FP constants.
Reviewers: bogner, lhames, t.p.northover
Subscribers: jlebar, sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D44277
llvm-svn: 327161
Added helpers to build G_FCONSTANT, along with matching ConstantFP and
unit tests for the same.
Sample usage.
auto MIB = Builder.buildFConstant(s32, 0.5); // Build IEEESingle
For Matching the above
const ConstantFP* Tmp;
mi_match(DstReg, MRI, m_GFCst(Tmp));
https://reviews.llvm.org/D44128
reviewed by: volkan
llvm-svn: 327152
The code to match and produce more x86 vector blends was enabled for all
architectures even though the transform may pessimize the code for other
architectures that do not provide a vector blend instruction.
Added an aarch64 testcase to check that a VZIP instruction is generated instead
of byte movs.
Differential Revision: https://reviews.llvm.org/D44118
llvm-svn: 327132
This patch is a fix for PR36642.
While legalizing long vector types, make sure the smaller types get the
flags of the wider type.
bugzilla link: https://bugs.llvm.org/show_bug.cgi?id=36642
Change-Id: I0c2829639f094c862c10a6b51b342d4c2563e1fa
llvm-svn: 327079
Summary:
This patch adds the DW_AT_byte_size dwarf attribute to vectors.
This fixes PR21924
LLVM will round a vector up to the next alignable address, which can result in
the vector's representation in the object file being larger than what the
debugger will calculate via NumberOfElements * ElementSize. In such a case calling sizeof(MyVec) in the source will result in a different value than what a debugger might present. This situation can occur because LLVM permits non-power of two 'vector_size' attributes.
Reviewers: echristo, dexonsmith, aprantl
Reviewed By: aprantl
Subscribers: probinson, aprantl, llvm-commits, JDevlieghere
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D44048
llvm-svn: 327072
Summary:
A desired property of the node order in Swing Modulo Scheduling is
that for nodes outside circuits the following holds: none of them is
scheduled after both a successor and a predecessor. We call
node orders that meet this property valid.
Although invalid node orders do not lead to the generation of incorrect
code, they can cause the pipeliner not being able to find a pipelined schedule
for arbitrary II. The reason is that after scheduling the successor and the
predecessor of a node, no room may be left to schedule the node itself.
For data flow graphs with 0-latency edges, the node ordering algorithm
of Swing Modulo Scheduling can generate such undesired invalid node orders.
This patch fixes that.
In the remainder of this commit message, I will give an example
demonstrating the issue, explain the fix, and explain how the the fix is tested.
Consider, as an example, the following data flow graph with all
edge latencies 0 and all edges pointing downward.
```
n0
/ \
n1 n3
\ /
n2
|
n4
```
Consider the implemented node order algorithm in top-down mode. In that mode,
the algorithm orders the nodes based on greatest Height and in case of equal
Height on lowest Movability. Finally, in case of equal Height and
Movability, given two nodes with an edge between them, the algorithm prefers
the source-node.
In the graph, for every node, the Height and Movability are equal to 0.
As will be explained below, the algorithm can generate the order n0, n1, n2, n3, n4.
So, node n3 is scheduled after its predecessor n0 and after its successor n2.
The reason that the algorithm can put node n2 in the order before node n3,
even though they have an edge between them in which node n3 is the source,
is the following: Suppose the algorithm has constructed the partial node
order n0, n1. Then, the nodes left to be ordered are nodes n2, n3, and n4. Suppose
that the while-loop in the implemented algorithm considers the nodes in
the order n4, n3, n2. The algorithm will start with node n4, and look for
more preferable nodes. First, node n4 will be compared with node n3. As the nodes
have equal Height and Movability and have no edge between them, the algorithm
will stick with node n4. Then node n4 is compared with node n2. Again the
Height and Movability are equal. But, this time, there is an edge between
the two nodes, and the algorithm will prefer the source node n2.
As there are no nodes left to compare, the algorithm will add node n2 to
the node order, yielding the partial node order n0, n1, n2. In this way node n2
arrives in the node-order before node n3.
To solve this, this patch introduces the ZeroLatencyHeight (ZLH) property
for nodes. It is defined as the maximum unweighted length of a path from the
given node to an arbitrary node in which each edge has latency 0.
So, ZLH(n0)=3, ZLH(n1)=ZLH(n3)=2, ZLH(n2)=1, and ZLH(n4)=0
In this patch, the preference for a greater ZeroLatencyHeight
is added in the top-down mode of the node ordering algorithm, after the
preference for a greater Height, and before the preference for a
lower Movability.
Therefore, the two allowed node-orders are n0, n1, n3, n2, n4 and n0, n3, n1, n2, n4.
Both of them are valid node orders.
In the same way, the bottom-up mode of the node ordering algorithm is adapted
by introducing the ZeroLatencyDepth property for nodes.
The patch is tested by adding extra checks to the following existing
lit-tests:
test/CodeGen/Hexagon/SUnit-boundary-prob.ll
test/CodeGen/Hexagon/frame-offset-overflow.ll
test/CodeGen/Hexagon/vect/vect-shuffle.ll
Before this patch, the pipeliner failed to pipeline the loops in these tests
due to invalid node-orders. After the patch, the pipeliner successfully
pipelines all these loops.
Reviewers: bcahoon
Reviewed By: bcahoon
Subscribers: Ayal, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D43620
llvm-svn: 326925
Fixes the bug found by asan. Also XFAIL the new test for Darwin,
which is stuck on DWARF v2, and fix up other tests so they stop
failing on Windows.
llvm-svn: 326839
Summary:
- Emit UdtSourceLine information for enums to match MSVC
- Add a method to add UDTSrcLine and call it for all Class/Struct/Union/Enum
- Update test cases to verify the changes
Reviewers: zturner, llvm-commits, rnk
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D44116
llvm-svn: 326824
I obviously messed up arguments to MachineOperand::CreateReg
in rL326769. This should make it work as intended.
Thanks to RKSimon for spotting this.
llvm-svn: 326780
Summary:
This is a workaround for pr36417
https://bugs.llvm.org/show_bug.cgi?id=36417
LiveDebugVariables will now verify that the DBG_VALUE instructions
are sane (prior to register allocation) by asking LIS if a virtual
register used in the DBG_VALUE is live (or dead def) in the slot
index before the DBG_VALUE. If it isn't sane the DBG_VALUE is
discarded.
One pass that was identified as introducing non-sane DBG_VALUE
instructtons, when analysing pr36417, was the DAG->DAG Instruction
Selection. It sometimes inserts DBG_VALUE instructions referring to
a virtual register that is defined later in the same basic block.
So it is a use before def kind of problem. The DBG_VALUE is
typically inserted in the beginning of a basic block when this
happens. The problem can be seen in the test case
test/DebugInfo/X86/dbg-value-inlined-parameter.ll
Reviewers: aprantl, rnk, probinson
Reviewed By: aprantl
Subscribers: vsk, davide, alexcrichton, Ka-Ka, eraman, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43956
llvm-svn: 326769
DWARF v5 specifies that the root file (also given in the DW_AT_name
attribute of the compilation unit DIE) should be emitted explicitly to
the line table's list of files. This makes the line table more
independent of the .debug_info section.
Differential Revision: https://reviews.llvm.org/D44054
llvm-svn: 326758
Summary:
Fabs is a common floating-point operation, especially for some expansions. This patch adds
a new generic opcode for llvm.fabs.* intrinsic in order to avoid building/matching this intrinsic.
Reviewers: qcolombet, aditya_nandakumar, dsanders, rovka
Reviewed By: aditya_nandakumar
Subscribers: kristof.beyls, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D43864
llvm-svn: 326749
This is a NFC simple patch that changes the DEBUG dumping in the
MachineScheduler so that the dumping of the built SUnits is done before the
SchedImpl->initialize() is called.
This is better on SystemZ, since it has a strategy that does some dumping at
the start of the region, and it is not possible to easily read it if it is
output above a long list of SU.
Review: Javed Absar
https://reviews.llvm.org/D44089
llvm-svn: 326716
Loading a constant into a k-register in AVX512 requires a bitcast from a scalar constant. In the test case here we have a k-register store that gets split into multiple parts of KNL. MergeConsecutiveStores sees each of these pieces as a consecutive store and looks through the bitcast to find the underly scalar constant. But when we went to create the combined store we didn't look through the same bitcast.
llvm-svn: 326677
X86 considers v1i1 a legal type under AVX512 and as such a truncate from a v1iX type to v1i1 can be turned into a scalar truncate plus a conversion to v1i1. We would much prefer a v1i1 SCALAR_TO_VECTOR over a one element BUILD_VECTOR.
During lowering we were detecting the v1i1 BUILD_VECTOR as a splat BUILD_VECTOR like we try to do for v2i1/v4i1/etc. In this case we create (select i1 splat_elt, v1i1 all-ones, v1i1 all-zeroes). That goes through some more legalization and we end up with a CMOV choosing between 0 and 1 in scalar and a scalar_to_vector.
Arguably we could detect the v1i1 BUILD_VECTOR and do this better in X86 target code. But just using a SCALAR_TO_VECTOR in legalization is much easier.
llvm-svn: 326637
The fast/linear DAG scheduler doesn't lower DBG_VALUEs except for
function entry nodes.
Patch by Joshua Cranmer!
Differential Revision: https://reviews.llvm.org/D43028
llvm-svn: 326631
This patch adds support for detecting outer loops with irreducible control
flow in LV. Current detection uses SCCs and only works for innermost loops.
This patch adds a utility function that works on any CFG, given its RPO
traversal and its LoopInfoBase. This function is a generalization
of isIrreducibleCFG from lib/CodeGen/ShrinkWrap.cpp. The code in
lib/CodeGen/ShrinkWrap.cpp is also updated to use the new generic utility
function.
Patch by Diego Caballero <diego.caballero@intel.com>
Differential Revision: https://reviews.llvm.org/D40874
llvm-svn: 326568
Masking first, prevents the extend from being combine with loads. Its also interfering with some vXi1 extraction code.
Differential Revision: https://reviews.llvm.org/D42679
llvm-svn: 326500
This supports things like
(setcc ugt X, 0) -> (setcc ne X, 0)
I've restricted to only make changes to vectors before legalize ops because I doubt all targets have accurate condition code legality information for vectors given how little we did before.
Differential Revision: https://reviews.llvm.org/D42948
llvm-svn: 326495
Currently it's impossible to test InstructionSelect pass with MIR which
is considered illegal by the Legalizer in Assert builds. In early stages
of porting an existing backend from SelectionDAG ISel to GlobalISel,
however, we would have very basic CallLowering, Legalizer, and
RegBankSelect implementations, but rather functional Instruction Select
with quite a few patterns selectable due to the semi-automatic porting
process borrowing them from SelectionDAG ISel.
As we are trying to define legality as a property of being selectable by
the instruction selector, it would be nice to be able to easily check
what the selector can do in its current state w/o the legality check
provided by the Legalizer getting in the way.
It also seems beneficial to have a regression testing set up that would
not allow the selector to silently regress in its support of the MIR not
supported yet by the previous passes in the GlobalISel pipeline.
This commit adds -disable-gisel-legality-check command line option to
llc that disables those legality checks in RegBankSelect and
InstructionSelect passes.
It also adds quite a few MIR test cases for AArch64's Instruction
Selector. Every one of them would fail on the legality check at the
moment, but will select just fine if the check is disabled. Every test
MachineFunction is intended to exercise a specific selection rule and
that rule only, encoded in the MachineFunction's name by the rule's
number, ID, and index of its GIM_Try opcode in TableGen'erated
MatchTable (-optimize-match-table=false).
Reviewers: ab, dsanders, qcolombet, rovka
Reviewed By: bogner
Subscribers: kristof.beyls, volkan, aditya_nandakumar, aemerson,
rengolin, t.p.northover, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D42886
llvm-svn: 326396
FailedISel MachineFunction property is part of the CodeGen pipeline
state as much as every other property, notably, Legalized,
RegBankSelected, and Selected. Let's make that part of the state also
serializable / de-serializable, so if GlobalISel aborts on some of the
functions of a large module, but not the others, it could be easily seen
and the state of the pipeline could be maintained through llc's
invocations with -stop-after / -start-after.
To make MIR printable and generally to not to break it too much too
soon, this patch also defers cleaning up the vreg -> LLT map until
ResetMachineFunctionPass.
To make MIR with FailedISel: true also machine verifiable, machine
verifier is changed so it treats a MIR-module as non-regbankselected and
non-selected if there is FailedISel property set.
Reviewers: qcolombet, ab
Reviewed By: dsanders
Subscribers: javed.absar, rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42877
llvm-svn: 326343
Emulated TLS is enabled by llc flag -emulated-tls,
which is passed by clang driver.
When llc is called explicitly or from other drivers like LTO,
missing -emulated-tls flag would generate wrong TLS code for targets
that supports only this mode.
Now use useEmulatedTLS() instead of Options.EmulatedTLS to decide whether
emulated TLS code should be generated.
Unit tests are modified to run with and without the -emulated-tls flag.
Differential Revision: https://reviews.llvm.org/D42999
llvm-svn: 326341
Summary:
Some targets does not support labels inside debug sections, but support
references in form `section +|- offset`. Patch adds initial support
for this. Also, this patch disables emission of all additional debug
sections that may have labels inside of it (like pub sections and
string tables).
Reviewers: probinson, echristo
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D43627
llvm-svn: 326328
Removes verifyDomTree, using assert(verify()) everywhere instead, and
changes verify a little to always run IsSameAsFreshTree first in order
to print good output when we find errors. Also adds verifyAnalysis for
PostDomTrees, which will allow checking of PostDomTrees it the same way
we check DomTrees and MachineDomTrees.
Differential Revision: https://reviews.llvm.org/D41298
llvm-svn: 326315
Absence of memory operands is treated as "aliasing everything", so
dropping them is sufficient.
Recommit r326256 with a fixed testcase.
llvm-svn: 326262
Qualifiers on a pointer or reference type may apply to either the
pointee or the pointer itself. Consider 'const char *' and 'char *
const'. In the first example, the pointee data may not be modified
without casts, and in the second example, the pointer may not be updated
to point to new data.
In the general case, qualifiers are applied to types with LF_MODIFIER
records, which support the usual const and volatile qualifiers as well
as the __unaligned extension qualifier.
However, LF_POINTER records, which are used for pointers, references,
and member pointers, have flags for qualifiers applying to the
*pointer*. In fact, this is the only way to represent the restrict
qualifier, which can only apply to pointers, and cannot qualify regular
data types.
This patch causes LLVM to correctly fold 'const' and 'volatile' pointer
qualifiers into the pointer record, as well as adding support for
'__restrict' qualifiers in the same place.
Based on a patch from Aaron Smith
Differential Revision: https://reviews.llvm.org/D43060
llvm-svn: 326260
When attempting to compile the following Objective-C++ code with
CodeView debug info:
void (^b)(void) = []() {};
The generated debug metadata contains a structure like the following:
!43 = !DICompositeType(tag: DW_TAG_structure_type, name: "__block_literal_1", scope: !6, file: !6, line: 1, size: 168, elements: !44)
!44 = !{!45, !46, !47, !48, !49, !52}
...
!52 = !DIDerivedType(tag: DW_TAG_member, scope: !6, file: !6, line: 1, baseType: !53, size: 8, offset: 160, flags: DIFlagPublic)
!53 = !DIDerivedType(tag: DW_TAG_const_type, baseType: !54)
!54 = !DICompositeType(tag: DW_TAG_class_type, file: !6, line: 1, flags: DIFlagFwdDecl)
Note that the member node (!52) is unnamed, but rather than pointing to
a DICompositeType directly, it points to a DIDerivedType with tag
DW_TAG_const_type, which then points to the DICompositeType. However,
the CodeView assembly printer currently assumes that the base type for
an unnamed member will always be a DICompositeType, and attempts to
perform that cast, which triggers an assertion failure, since in this
case the base type is actually a DIDerivedType, not a DICompositeType
(and we would have to get the base type of the DIDerivedType to reach
the DICompositeType). I think the debug metadata being generated by the
frontend is correct (or at least plausible), and the CodeView printer
needs to handle this case.
This patch teaches the CodeView printer to unwrap any qualifier types.
The qualifiers are just dropped for now. Ideally, they would be applied
to the added indirect members instead, but this occurs infrequently
enough that adding the logic to handle the qualifiers correctly isn't
worth it for now. A FIXME is added to note this.
Additionally, Reid pointed out that the underlying assumption that an
unnamed member must be a composite type is itself incorrect and may not
hold for all frontends. Therefore, after all qualifiers have been
stripped, check if the resulting type is in fact a DICompositeType and
just return if it isn't, rather than assuming the type and crashing if
that assumption is violated.
Differential Revision: https://reviews.llvm.org/D43803
llvm-svn: 326255
Currently when abort is enabled, we get a diagnostic saying "Fallback
path used .... " and the program terminates. To actually figure out what
the reason is, we need to run again with another verbose argument
"-pass-remarks-missed=gisel". Instead, when we are going to abort,
we might as well print expensive remarks.
https://reviews.llvm.org/D43796
llvm-svn: 326215
Re-enable commit r323991 now that r325931 has been committed to make
MachineOperand::isRenamable() check more conservative w.r.t. code
changes and opt-in on a per-target basis.
llvm-svn: 326208
AVX512 used to promote v32i1 to v32i8 during legalization when BWI was disabled. So this code was added to improve legalization of v32i1 concat_vectors of v16i1 by extending the v16i1 to v16i8 to avoid scalarization.
X86 has since switched to legalizing v32i1 by splitting to v16i1 instead. This has rendered this code unnecessary and its no longer exercised.
llvm-svn: 326153
Currently we assert that only non target specific opcodes can have
missing RegisterClass constraints in the MCDesc. The backend can have
instructions with register operands but don't have RegisterClass
constraints (say using unknown_class) in which case the instruction
defining the register will constrain it.
Change the assert to only fire if a def has no regclass.
https://reviews.llvm.org/D43409
llvm-svn: 326142
In r322867, we introduced IsStandalone when printing MIR in -debug
output. The default behaviour for that was:
1) If any of MBB, MI, or MO are -debug-printed separately, don't omit any
redundant information.
2) When -debug-printing a MF entirely, don't print any redundant
information.
3) When printing MIR, don't print any redundant information.
I'd like to change 2) to:
2) When -debug-printing a MF entirely, don't omit any redundant information.
Differential Revision: https://reviews.llvm.org/D43337
llvm-svn: 326094
Summary:
In the test case, the machine scheduler moves a dead write to a subreg
up into the middle of a segment of the overall reg's live range, where
the segment had liveness only for other subregs in the reg.
handleMoveUp created an invalid live range, causing an assert a bit
later.
This commit fixes it to handle that situation. The segment is split in
two at the insertion point, and the part after the split, and any
subsequent segments up to the old position, are changed to be defined by
the moved def.
V2: Better test.
Subscribers: MatzeB, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D43478
Change-Id: Ibc42445ddca84e79ad1f616401015d22bc63832e
llvm-svn: 326087
In DWARF v5 the Line Number Program Header is extensible, allowing values with
new content types. In this extension a content type is added,
DW_LNCT_LLVM_source, which contains the embedded source code of the file.
Add new optional attribute for !DIFile IR metadata called source which contains
source text. Use this to output the source to the DWARF line table of code
objects. Analogously extend METADATA_FILE in Bitcode and .file directive in ASM
to support optional source.
Teach llvm-dwarfdump and llvm-objdump about the new values. Update the output
format of llvm-dwarfdump to make room for the new attribute on file_names
entries, and support embedded sources for the -source option in llvm-objdump.
Differential Revision: https://reviews.llvm.org/D42765
llvm-svn: 325970
Summary:
Add a target option AllowRegisterRenaming that is used to opt in to
post-register-allocation renaming of registers. This is set to 0 by
default, which causes the hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
fields of all opcodes to be set to 1, causing
MachineOperand::isRenamable to always return false.
Set the AllowRegisterRenaming flag to 1 for all in-tree targets that
have lit tests that were effected by enabling COPY forwarding in
MachineCopyPropagation (AArch64, AMDGPU, ARM, Hexagon, Mips, PowerPC,
RISCV, Sparc, SystemZ and X86).
Add some more comments describing the semantics of the
MachineOperand::isRenamable function and how it is set and maintained.
Change isRenamable to check the operand's opcode
hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq bit directly instead of
relying on it being consistently reflected in the IsRenamable bit
setting.
Clear the IsRenamable bit when changing an operand's register value.
Remove target code that was clearing the IsRenamable bit when changing
registers/opcodes now that this is done conservatively by default.
Change setting of hasExtraSrcRegAllocReq in AMDGPU target to be done in
one place covering all opcodes that have constant pipe read limit
restrictions.
Reviewers: qcolombet, MatzeB
Subscribers: aemerson, arsenm, jyknight, mcrosier, sdardis, nhaehnle, javed.absar, tpr, arichardson, kristof.beyls, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, escha, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D43042
llvm-svn: 325931
Summary:
There are transformation that change setcc into other constructs, and transform that try to reconstruct a setcc from the brcond condition. Depending on what order these transform are done, the end result differs.
Most of the time, it is preferable to get a setcc as a brcond argument (and this is why brcond try to recreate the setcc in the first place) so we ensure this is done every time by also doing it at the setcc level when the only user is a brcond.
Reviewers: spatel, hfinkel, niravd, craig.topper
Subscribers: nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D41235
llvm-svn: 325892
isCondCodeLegal internally checked Legal or Custom which is misleading. Though no targets set any cond code action to Custom today.
So I've renamed isCondCodeLegal to isCondCodeLegalOrCustom and added a real isCondCodeLegal that only checks Legal.
I've changed legalization code to use isCondCodeLegalOrCustom and left things reachable via DAG combine as isCondCodeLegal. I've also changed some places that called getCondCodeAction and compared to Legal to just use isCondCodeLegal.
I'm looking at trying to keep SETCC all the way to isel for the AVX512 integer comparisons and I suspect I'll need to make some condition codes Custom to stop DAG combine from changing things post LegalizeOps. Prior to this only Expand stopped DAG combine, but that causes LegalizeOps to try to swap operands or invert rather than calling our Custom handler.
Differential Revision: https://reviews.llvm.org/D43607
llvm-svn: 325829
This patch reverts r325440 and r325438 because it triggers an
assertion in SelectionDAGBuilder.cpp. Also having debug enabled
may unintentionally affect code-gen. The patch is reverted until
we find a better solution.
llvm-svn: 325825
This allows us to improve vector constant matching in more DAG code (backends, TargetLowering etc.).
Differential Revision: https://reviews.llvm.org/D43466
llvm-svn: 325815
Summary:
If there is no debug info for macros, do not emit labels for empty
macinfo sections.
Reviewers: probinson, echristo
Subscribers: aprantl, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43589
llvm-svn: 325803
We looked through a BITCAST, but the bitcast might be a from a scalar type rather than a vector.
I don't have a test case. I stumbled onto it while prototyping another change that isn't ready yet.
llvm-svn: 325750
Spilling may cause previously non-empty intervals (both for the spilled vreg
and others) to become empty. Moving the pruning into initializeGraph catches
these cases and fixes PR33038.
llvm-svn: 325632
This is split off from D42948 and includes just the cases that constant fold to true or false. It also includes some refactoring to keep predicate checks together.
This supports things like
(setcc uge X, 0) -> true
Differential Revision: https://reviews.llvm.org/D43489
llvm-svn: 325627
DAGCombiner and SimplifySetCC both use getPointerTy for shift amounts pre-legalization. DAGCombiner uses a single helper function to hide this. SimplifySetCC does it in multiple places.
This patch adds a defaulted parameter to getShiftAmountTy that can make it return getPointerTy for scalar types. Use this parameter to simplify the SimplifySetCC and DAGCombiner.
Additionally, there were two places in SimplifySetCC that were creating shifts using the target's preferred shift amount pre-legalization. If the target uses a narrow type and the type is illegal, this can cause SimplfiySetCC to create a shift with an amount that can't represent all possible shift values for the type. To fix this we should use pointer type there too.
Alternatively we could make getScalarShiftAmountTy for each target return a safe value for large types as proposed in D43445. And maybe we should still do that, but fixing the SimplifySetCC code keeps other targets from tripping over this in the future.
Fixes PR36250.
Differential Revision: https://reviews.llvm.org/D43449
llvm-svn: 325602
ExpandUINT_TO_FLOAT can accept vXi32 or vXi64 inputs, so we need to use a uint64_t shift to generate the 2^(BW/2) constant.
No test case unfortunately as no upstream target uses this, but its affecting a downstream target.
llvm-svn: 325578
This is the second part of recommit of r325224. The previous part was
committed in r325426, which deals with C++ memory allocation. Solution
for C memory allocation involved functions `llvm::malloc` and similar.
This was a fragile solution because it caused ambiguity errors in some
cases. In this commit the new functions have names like `llvm::safe_malloc`.
The relevant part of original comment is below, updated for new function
names.
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
In some cases memory is allocated by a call to some of C allocation
functions, malloc, calloc and realloc. They are used for interoperability
with C code, when allocated object has variable size and when it is
necessary to avoid call of constructors. In many calls the result is not
checked for null pointer. To simplify checks, new functions are defined
in the namespace 'llvm': `safe_malloc`, `safe_calloc` and `safe_realloc`.
They behave as corresponding standard functions but produce fatal error if
allocation fails. This change replaces the standard functions like 'malloc'
in the cases when the result of the allocation function is not checked
for null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statement is added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325551
If we have a clamp pattern, SMIN(SMAX(X, LO),HI) or SMAX(SMIN(X, HI),LO) then we can deduce that the number of signbits (zeros/ones) will be at least the minimum of the LO and HI constants.
ComputeKnownBits equivalent of D43338.
Differential Revision: https://reviews.llvm.org/D43463
llvm-svn: 325521
Summary:
This commit separates the abstract accelerator table data structure
from the code for writing out an on-disk representation of a specific
accelerator table format. The idea is that former (now called
AccelTable<T>) can be reused for the DWARF v5 accelerator tables
as-is, without any further customizations.
Some bits of the emission code (now living in the EmissionContext class)
can be reused for DWARF v5 as well, but the subtle differences in the
layout of various subtables mean the sharing is not always possible.
(Also, the individual emit*** functions are fairly simple so there's a
tradeoff between making a bigger general-purpose function, and two
smaller targeted functions.)
Another advantage of this setup is that more of the serialization logic
can be hidden in the .cpp file -- I have moved declarations of the
header and all the emission functions there.
Reviewers: JDevlieghere, aprantl, probinson, dblaikie
Subscribers: echristo, clayborg, vleschuk, llvm-commits
Differential Revision: https://reviews.llvm.org/D43285
llvm-svn: 325516
If we have a clamp pattern, SMIN(SMAX(X, LO),HI) or SMAX(SMIN(X, HI),LO) then we can deduce that the number of signbits will be at least the minimum of the LO and HI constants.
I haven't bothered with the UMIN/UMAX equivalent as (1) we don't have any current use cases and (2) I wonder if we'd be better off immediately falling back for ComputeKnownBits for UMIN/UMAX which already has optimization patterns useful for unsigned cases.
Differential Revision: https://reviews.llvm.org/D43338
llvm-svn: 325450
Summary:
https://llvm.org/PR36263 shows that when compiling at -O0 a dbg.value()
instruction (that remains from an original dbg.declare()) is dropped
by FastISel. Since FastISel selects instructions by iterating a basic
block backwards, it drops the dbg.value if one of its operands is not
yet instantiated by a previously selected instruction.
Instead of calling 'lookUpRegForValue()' we can call 'getRegForValue()'
instead that will insert a placeholder for the operand to be filled in
when continuing the instruction selection.
Reviewers: aprantl, dblaikie, probinson
Reviewed By: aprantl
Subscribers: llvm-commits, dstenb, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43386
llvm-svn: 325438
This makes sure that alloca() function calls properly probe the
stack as needed.
Differential Revision: https://reviews.llvm.org/D42356
llvm-svn: 325433
Summary:
The assert for a DISubrange's CountVarDIE to be available fails
when the dbg.value() has been optimized away for any reason.
Having the assert for that is a little heavy, so instead removing
it now in favor of not generating the 'count' expression.
Addresses http://llvm.org/PR36263 .
Reviewers: aprantl, dblaikie, probinson
Reviewed By: aprantl
Subscribers: JDevlieghere, llvm-commits, dstenb
Differential Revision: https://reviews.llvm.org/D43387
llvm-svn: 325427
This reverts commit r323991.
This commit breaks target that don't model all the register constraints
in TableGen. So far the workaround was to set the
hasExtraXXXRegAllocReq, but it proves that it doesn't cover all the
cases.
For instance, when mutating an instruction (like in the lowering of
COPYs) the isRenamable flag is not properly updated. The same problem
will happen when attaching machine operand from one instruction to
another.
Geoff Berry is working on a fix in https://reviews.llvm.org/D43042.
llvm-svn: 325421
Sadly, r324359 caused at least PR36312. There is a patch out for review
but it seems to be taking a bit and we've already had these crashers in
tree for too long. We're hitting this PR in real code now and are
blocked on shipping new compilers as a consequence so I'm reverting us
back to green.
Sorry for the churn due to the stacked changes that I had to revert. =/
llvm-svn: 325420
Based off the DemandedElts mask the and UNDEF elements returned from the SimplifyDemandedVectorElts calls to the shuffle operands, we can attempt to simplify the shuffle mask.
I had to be very conservative here as accepting post-legalized shuffle masks could cause problems for targets that legalize UNDEF mask elements back to inrange values (PowerPC), similarly combining to identity shuffle masks could cause too much UNDEF information to disappear for later combines.
llvm-svn: 325354
Summary:
Currently when expanding a SETCC node into a SELECT_CC, LLVM uses
an incorrect type for determining BooleanContent of the result. This
patch fixes the issue.
Fixes PR36079.
Reviewers: rogfer01, javed.absar, efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43282
llvm-svn: 325325
Same for the sign extend case.
Currently we check for multiple uses on the binop. Then we call ExtendUsesToFormExtLoad to capture SetCCs that use the load. So we only end up finding any setccs when the and has additional uses and the load is used by a setcc. I don't think the and having multiple uses is relevant here. I think we should only be checking for the load having multiple uses.
This changes an NVPTX test because we now find that the load has a second use by a truncate, but ExtendUsesToFormExtLoad only looks at setccs it can extend. All other operations just check isTruncateFree. Maybe we should allow widening of an existing truncate even if its not free?
Differential Revision: https://reviews.llvm.org/D43063
llvm-svn: 325289
This is mainly a move of simplifyShuffleOperands from DAGCombiner::visitVECTOR_SHUFFLE to create a more general purpose TargetLowering::SimplifyDemandedVectorElts implementation.
Further features can be moved/added in future patches.
Differential Revision: https://reviews.llvm.org/D42896
llvm-svn: 325232
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
Usual programming practice does not require checking result of 'operator
new' because it throws 'std::bad_alloc' in the case of allocation error.
However, LLVM is usually built with exceptions turned off, so 'new' can
return null pointer. This change installs custom new handler, which causes
fatal error in the case of out of memory. The handler is installed
automatically prior to call to 'main' during construction of a static
object defined in 'lib/Support/ErrorHandling.cpp'. If the application does
not use this file, the handler may be installed manually by a call to
'llvm::install_out_of_memory_new_handler', declared in
'include/llvm/Support/ErrorHandling.h".
There are calls to C allocation functions, malloc, calloc and realloc.
They are used for interoperability with C code, when allocated object has
variable size and when it is necessary to avoid call of constructors. In
many calls the result is not checked against null pointer. To simplify
checks, new functions are defined in the namespace 'llvm' with the
same names as these C function. These functions produce fatal error if
allocation fails. User should use 'llvm::malloc' instead of 'std::malloc'
in order to use the safe variant. This change replaces 'std::malloc'
in the cases when the result of allocation function is not checked against
null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statements are added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325224
Summary:
This patch adds templated functions to MachineIRBuilder for some opcodes
and adds pattern matcher support for G_AND and G_OR.
Reviewers: aditya_nandakumar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D43309
llvm-svn: 325162
Previously we only invalidated the pressure set limit cached when the TargetRegisterInfo pointer changes. But as reserved regs and callee saved regs are used as part of calculating the limits we should invalidate when those change too.
I encountered this when reverting a patch from the 6.0 branch. One of the x86 test files had a function that used rbp as a frame pointer, making it reserved. It was followed by another function which didn't use rbp but had the same TRI so the pressure set limit cache was not invalidated. If i removed the function that used rbp as a frame pointer from the file, the remaining function then got a different register pressure limit for the GR16 pressure set. This caused the machine scheduler to change the scheduling for the function. This was an unexpected change from just deleting a function.
I don't have a test case for trunk because the particular x86 test case is different enough from the 6.0 branch to not be affected now.
Differential Revision: https://reviews.llvm.org/D43274
llvm-svn: 325153
The prologue-end line record must be emitted after the last
instruction that is part of the function frame setup code and before
the instruction that marks the beginning of the function body.
Patch by Carlos Alberto Enciso!
Differential Revision: https://reviews.llvm.org/D41762
llvm-svn: 325143
When creating high MachineMemOperand for MSTORE/MLOAD we supply
it with the original PointerInfo, while the pointer itself had been incremented.
The patch adds the proper offset to the PointerInfo.
llvm-svn: 325135
Preserve debug info from a dead 'and' instruction with a constant.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D43163
llvm-svn: 325119
Making a width of GEP Index, which is used for address calculation, to be one of the pointer properties in the Data Layout.
p[address space]:size:memory_size:alignment:pref_alignment:index_size_in_bits.
The index size parameter is optional, if not specified, it is equal to the pointer size.
Till now, the InstCombiner normalized GEPs and extended the Index operand to the pointer width.
It works fine if you can convert pointer to integer for address calculation and all registered targets do this.
But some ISAs have very restricted instruction set for the pointer calculation. During discussions were desided to retrieve information for GEP index from the Data Layout.
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120416.html
I added an interface to the Data Layout and I changed the InstCombiner and some other passes to take the Index width into account.
This change does not affect any in-tree target. I added tests to cover data layouts with explicitly specified index size.
Differential Revision: https://reviews.llvm.org/D42123
llvm-svn: 325102
* Document most API's
* Delete a useless function call
* Fix a discrepancy between the single and multi-opcode variants of
getActionDefinitions().
The multi-opcode variant now requires that more than one opcode is requested.
Previously it acted much like the single-opcode form but unnecessarily
enforced the requirements of the multi-opcode form.
llvm-svn: 325067
Also make a drive-by-fix of a bug in the subregister scan code that
only triggers with an incomplete or otherwise very irregular machine
description.
rdar://problem/37404493
This re-applies r324972 with an early exit in the case of a complete
failure to make this commit NFC again as intended.
llvm-svn: 325041
Summary:
If the and has an additional use we shouldn't invert it. That creates an additional instruction.
While there add a one use check to the transform above that looked similar.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43225
llvm-svn: 325019
The bug has been lying dormant, but apparently was never exposed, until
after rL324941 because we didn't return the correct result
for shifts with undef operands.
llvm-svn: 325010
Here are the number of additional debug values salvaged in a stage2
build of clang:
63 SALVAGE: MUL
1250 SALVAGE: SDIV
(No values were salvaged from `srem` instructions in this experiment,
but it's a simple case to handle so we might as well.)
llvm-svn: 324976
Here are the number of additional debug values salvaged in a stage2
build of clang:
1912 SALVAGE: ASHR
405 SALVAGE: LSHR
249 SALVAGE: SHL
llvm-svn: 324975
Also make a drive-by-fix of a bug in the subregister scan code that
only triggers with an incomplete or otherwise very irregular machine
description.
rdar://problem/37404493
llvm-svn: 324972
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
creation of memcpys in the SafeStack pass to set the alignment of the destination object to
its stack alignment while separately setting the source byval arguments alignment to its
alignment.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. (rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402, rL324626, rL324642, rL324653, rL324654, rL324773, rL324774,
rL324781, rL324784 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
Reviewers: eugenis, bollu
Reviewed By: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42710
llvm-svn: 324955
This started by noticing that scalar and vector types were producing different results with div ops in PR36305:
https://bugs.llvm.org/show_bug.cgi?id=36305
...but the problem is bigger. I couldn't keep it straight without a table, so I'm attaching that as a PDF to
the review. The x86 tests in undef-ops.ll correspond to that table.
Green means that instsimplify and the DAG agree on the result for all types.
Red means the DAG was returning undef when IR was not.
Yellow means the DAG was returning a non-undef result when IR returned undef.
This patch assumes that we're currently doing the right thing in IR.
Note: I couldn't find any problems with lowering vector constants as the code comments were warning,
but those comments were written long ago in rL36413 .
Differential Revision: https://reviews.llvm.org/D43141
llvm-svn: 324941
If merging them, the dllexport attribute needs to be brought along
to the new GlobalAlias.
Differential Revision: https://reviews.llvm.org/D43192
llvm-svn: 324937
Rather than encode the absence of a checksum with a Kind variant, instead put
both the kind and value in a struct and wrap it in an Optional.
Differential Revision: http://reviews.llvm.org/D43043
llvm-svn: 324928
Armv8.1-A added an atomic load-clear instruction (which performs bitwise
and with the complement of it's operand), but not a load-and
instruction. Our current code-generation for atomic load-and always
inserts an MVN instruction to invert its argument, even if it could be
folded into a constant or another instruction.
This adds lowering early in selection DAG to convert a load-and
operation into an xor with -1 and a load-clear, allowing the normal DAG
optimisations to work on it.
To do this, I've had to add a new ISD opcode, ATOMIC_LOAD_CLR. I don't
see any easy way to do this with an AArch64-specific ISD node, because
the code-generation for atomic operations assumes the SDNodes are of
type AtomicSDNode.
I've left the old tablegen patterns in because they are still needed for
global isel.
Differential revision: https://reviews.llvm.org/D42478
llvm-svn: 324908
Add a common -trap-unreachable option, similar to the target
specific hexagon equivalent, which has been replaced. This
turns unreachable instructions into traps, which is useful for
debugging.
Differential Revision: https://reviews.llvm.org/D42965
llvm-svn: 324880
Instead of reserving 0xF00 bytes for the fixed length portion of the CodeView
symbol name, calculate the actual length of the fixed length portion.
Differential Revision: https://reviews.llvm.org/D42125
llvm-svn: 324850
This reverses instcombine's demanded bits' transform which always tries to clear bits in constants.
As noted in PR35792 and shown in the test diffs:
https://bugs.llvm.org/show_bug.cgi?id=35792
...we can do better in codegen by trying to form -1. The x86 sub test shows a missed opportunity.
I did investigate changing instcombine's behavior, but it would be more work to change
canonicalization in IR. Clearing bits / shrinking constants can allow killing instructions,
so we'd have to figure out how to not regress those cases.
Differential Revision: https://reviews.llvm.org/D42986
llvm-svn: 324839
This allows us to recognise more saturation patterns and also simplify some MINMAX codegen that was failing to combine CMPGE comparisons to a legal CMPGT.
Differential Revision: https://reviews.llvm.org/D43014
llvm-svn: 324837
SelectionDAG::getBoolConstant was recently introduced. At the time I didn't know getConstTrueVal existed, but I think getBoolConstant is better as it will use the source VT to make sure it can properly detect floating point if it is configured differently.
llvm-svn: 324832
Extend salvageDebugInfo to preserve the debug info from a dead 'or'
with a constant.
Patch by Ismail Badawi!
Differential Revision: https://reviews.llvm.org/D43129
llvm-svn: 324764
* Use uleb128 for code offsets in the LSDA call site table.
* Omit the TTBase offset if the type table is empty.
This change can reduce the size of the DWARF/Itanium LSDA by about half.
Patch by Ryan Prichard!
llvm-svn: 324750
Rely on the assembler to finalize the layout of the DWARF/Itanium
exception-handling LSDA. Rather than calculate the exact size of each
thing in the LSDA, use assembler directives:
To emit the offset to the TTBase label:
.uleb128 .Lttbase0-.Lttbaseref0
.Lttbaseref0:
To emit the size of the call site table:
.uleb128 .Lcst_end0-.Lcst_begin0
.Lcst_begin0:
... call site table entries ...
.Lcst_end0:
To align the type info table:
... action table ...
.balign 4
.long _ZTIi
.long _ZTIl
.Lttbase0:
Using assembler directives simplifies the compiler and allows switching
the encoding of offsets in the call site table from udata4 to uleb128 for
a large code size savings. (This commit does not change the encoding.)
The combination of the uleb128 followed by a balign creates an unfortunate
dependency cycle that the assembler must sometimes resolve either by
padding an LEB or by inserting zero padding before the type table. See
PR35809 or GNU as bug 4029.
Patch by Ryan Prichard!
llvm-svn: 324749
r314974 introduced insertion of DEBUG_VALUEs after
each redefinition of debug value register in the slot index range.
In case the instruction redefining the debug value register
was a terminator, machine verifier would complain since it
enforces the rule of no non-terminator instructions
following the first terminator.
Differential Revision: https://reviews.llvm.org/D42801
llvm-svn: 324734
When adding operands to machine instructions in case of
RegisterSDNodes, generate a COPY node in case the register class
does not match the one in the instruction definition.
Differental Revision: https://reviews.llvm.org/D35561
llvm-svn: 324733
Summary:
The class contained arrays of two structures (DataArray and HashData).
These structures were in 1:1 correspondence, and one of them contained
pointers to the other (and *both* contained a "Name" field). By merging
these two structures into one, we can save a bit of space without
negatively impacting much of anything.
Reviewers: JDevlieghere, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43073
llvm-svn: 324724
Add verification for copies involving generic registers if they are
compatible - ie if it is a generic copy, then the types are the
same, and if a COPY b/w generic and target virtual register, then
the sizes should be the same. Only checks if there are no sub registers
involved for now.
https://reviews.llvm.org/D37775
llvm-svn: 324696
This addresses review feedback for D42940. The topological sort is
slightly more expensive but it can now also detect cycles in the
dependencies and actually works correctly.
rdar://problem/37217988
Differential Review: https://reviews.llvm.org/D43036
llvm-svn: 324677
Many in SimplifySetCC and FoldSetCC try to create true or false constants. Some of them query getBooleanContents to figure out whether to use all ones or just 1 for true. But many places do not check and just use 1 without ensuring the VT has an i1 scalar type. Note sure if those places only trigger before type legalization so they only see an i1
type?
To cleanup the inconsistency and reduce some duplicated code, this patch adds a getBoolConstant method to SelectionDAG that takes are of querying getBooleanContents and doing the right thing.
Differential Revision: https://reviews.llvm.org/D43037
llvm-svn: 324634
We're passing the binary op that uses the load instead of the load.
Noticed by inspection. Not sure how to test this because this just prevents the introduction of an extend that will later be truncated and will probably be combined out.
llvm-svn: 324568
The truncate is being used to replace other users of of the load, but we checked that the load only has one use so there are no other uses to replace.
llvm-svn: 324567
Instead of:
%bb.1: derived from LLVM BB %for.body
print:
bb.1.for.body:
Also use MIR syntax for MBB attributes like "align", "landing-pad", etc.
llvm-svn: 324563
The truncate is only needed if the load has additional users. It used to get passed to extendSetCCUses so was created early, but that's no longer the case.
llvm-svn: 324562
Travel all chains paths to first non-tokenfactor node can be
exponential work. Add simple redundency check to avoid this.
Fixes PR36264.
llvm-svn: 324491
This patch is the LLVM part of fixing the issues, described in
https://bugs.llvm.org/show_bug.cgi?id=36168
* The representation of enumerator values in the debug info metadata now
contains a boolean flag isUnsigned, which determines how the bits of
the value are interpreted.
* The DW_TAG_enumeration type DIE now always (for DWARF version >= 3)
includes a DW_AT_type attribute, which refers to the underlying
integer type, as suggested in DWARFv4 (5.7 Enumeration Type Entries).
* The debug info metadata for enumeration type contains (in flags)
indication whether this is a C++11 "fixed enum".
* For C++11 enumeration with a fixed underlying type, the DIE also
includes the DW_AT_enum_class attribute (for DWARF version >= 4).
* Encoding of enumerator constants uses DW_FORM_sdata for signed values
and DW_FORM_udata for unsigned values, as suggested by DWARFv4 (7.5.4
Attribute Encodings).
The changes should be backwards compatible:
* the isUnsigned attribute is optional and defaults to false.
* if the underlying type for the enumeration is not available, the
enumerator values are considered signed.
* the FixedEnum flag defaults to clear.
* the bitcode format for DIEnumerator stores the unsigned flag bit #1 of
the first record element, so the format does not change and the zero
previously stored there is consistent with the false default for
IsUnsigned.
Differential Revision: https://reviews.llvm.org/D42734
llvm-svn: 324489
With fixes from rL324341.
Original commit message:
[MergeICmps] Enable the MergeICmps Pass by default.
Summary: Now that PR33325 is fixed, this should always improve the generated code.
Reviewers: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42793
llvm-svn: 324465
X86 currently has a late DAG combine after cttz/ctlz are turned into BSR+BSF+CMOV to detect this and remove the CMOV. But we should be able to do this much earlier and avoid creating the cmov all together.
For the changed AMDGPU test case it appears that previously the i8 cttz was type legalized to i16 which introduced an OR with 256 in order to limit the result to 8 on the widened type. At this point the result is known to never be zero, but nothing checked that. Then operation legalization is told to promote all i16 cttz to i32. This introduces an extend and a truncate and another OR with 65536 to limit the result to 16. With the DAG combiner change we are able to prevent the creation of the second OR since the opcode will have been changed to cttz_zero_undef after the first OR. I the lack of the OR caused the instruction to change to v_ffbl_b32_sdwa
Differential Revision: https://reviews.llvm.org/D42985
llvm-svn: 324427
n Rust, an enum that carries data in the variants is, essentially, a
discriminated union. Furthermore, the Rust compiler will perform
space optimizations on such enums in some situations. Previously,
DWARF for these constructs was emitted using a hack (a magic field
name); but this approach stopped working when more space optimizations
were added in https://github.com/rust-lang/rust/pull/45225.
This patch changes LLVM to allow discriminated unions to be
represented in DWARF. It adds createDiscriminatedUnionType and
createDiscriminatedMemberType to DIBuilder and then arranges for this
to be emitted using DWARF's DW_TAG_variant_part and DW_TAG_variant.
Note that DWARF requires that a discriminated union be represented as
a structure with a variant part. However, as Rust only needs to emit
pure discriminated unions, this is what I chose to expose on
DIBuilder.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D42082
llvm-svn: 324426
See D42509 for the original version of this.
Basically, there are two significant changes to behavior here:
- addLiveOuts always adds all pristine registers (even if a block has
no successors).
- addLiveOuts and addLiveOutsNoPristines always add all callee-saved
registers for return blocks (including conditional return blocks).
I cleaned up the functions a bit to make it clear these properties hold.
Differential Revision: https://reviews.llvm.org/D42655
llvm-svn: 324422
VLAs may refer to a previous DIE to express the DW_AT_count of their
type. Clang generates an artificial "vla_expr" variable for this. If
this DIE hasn't been created yet LLVM asserts. This patch fixes this
by sorting the local variables so that dependencies come before they
are needed. It also replaces the linear scan in DWARFFile with a
std::map, which can be faster.
Differential Revision: https://reviews.llvm.org/D42940
llvm-svn: 324412
Instruction Selection
Cleanup cycle/validity checks in ISel (IsLegalToFold,
HandleMergeInputChains) and X86 (isFusableLoadOpStore). Now do a full
search for cycles / dependencies pruning the search when topological
property of NodeId allows.
As part of this propogate the NodeId-based cutoffs to narrow
hasPreprocessorHelper searches.
Reviewers: craig.topper, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41293
llvm-svn: 324359
Summary: Now that PR33325 is fixed, this should always improve the generated code.
Reviewers: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42793
llvm-svn: 324317
Summary:
This method is trying to use the truncate node to find which SETCC operand should be replaced directly with the extended load.
This used to work correctly because all uses of the original load were replaced by the truncate before this function was called. So this was used to effectively bypass the truncate and find the load under it.
All but one of the callers now call this before the truncate has replaced the laod so the setcc doesn't yet use the truncate. To account for this we should pass the original load instead.
I changed the order of that one caller to make this work there too.
I don't have a test case because this is probably hidden by later DAG combines causing the extend and truncate to cancel out. I assume this way is a little more efficient and matches what was originally intended.
Reviewers: RKSimon, spatel, niravd
Reviewed By: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42878
llvm-svn: 324311
Summary:
If the load is already an extended load we should be using the memory VT for the legality check, not just the VT of the current extension.
I don't have a test case, just noticed it while investigating some load extension improvements.
Reviewers: RKSimon, spatel, niravd
Reviewed By: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42783
llvm-svn: 324181
Better to assume that any value type may be commuted, not just MVTs.
No test case right now, but discovered while investigating possible shuffle combines.
llvm-svn: 324179
When handling vectors with non byte-sized elements, reverse the order of the
elements in the built integer if the target is Big-Endian.
SystemZ tests updated.
Review: Eli Friedman, Ulrich Weigand.
https://reviews.llvm.org/D42786
llvm-svn: 324063
When getNode() is called to create an EXTRACT_VECTOR_ELT, assert that
the result VT is at least as wide as the vector element type.
Review: Eli Friedman
llvm-svn: 324061
Example situation:
```
BB0:
%0 = ...
use %0
; ...
condjump BB1
jmp BB2
BB1:
%0 = ... ; rematerialized def from above (from earlier split step)
jmp BB2
BB2:
; ...
use %0
```
%0 will have a live interval with 3 value numbers (for the BB0, BB1 and
BB2 parts). Now SplitKit tries and succeeds in rematerializing the value
number in BB2 (This only works because it is a secondary split so
SplitKit is can trace this back to a single original def).
We need to recompute all live ranges affected by a value number that we
rematerialize. The case that we missed before is that when the value
that is rematerialized is at a join (Phi VNI) then we also have to
recompute liveness for the predecessor VNIs.
rdar://35699130
Differential Revision: https://reviews.llvm.org/D42667
llvm-svn: 324039
We were only checking the element count, but not the total width. This could cause illegal bitcasts to be created if for example the output was 512-bits, but N1 is 256 bits, and the extraction size was 128-bits.
Fixes PR36199
Differential Revision: https://reviews.llvm.org/D42809
llvm-svn: 324002
Until we support extending loads properly we're going to fall back for these.
We already handle stores in the same way, so this is just being consistent.
llvm-svn: 324001
Increment the field list member count for base classes and virtual base
classes.
Differential Revision: https://reviews.llvm.org/D41874
llvm-svn: 324000
Summary:
This change extends MachineCopyPropagation to do COPY source forwarding
and adds an additional run of the pass to the default pass pipeline just
after register allocation.
This version of this patch uses the newly added
MachineOperand::isRenamable bit to avoid forwarding registers is such a
way as to violate constraints that aren't captured in the
Machine IR (e.g. ABI or ISA constraints).
This change is a continuation of the work started in D30751.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa, tstellar
Subscribers: tpr, mgorny, mcrosier, nhaehnle, nemanjai, jyknight, hfinkel, arsenm, inouehrs, eraman, sdardis, guyblank, fedor.sergeev, aheejin, dschuff, jfb, myatsina, llvm-commits
Differential Revision: https://reviews.llvm.org/D41835
llvm-svn: 323991
As shown in the example in PR34994:
https://bugs.llvm.org/show_bug.cgi?id=34994
...we can return a very wrong answer (inf instead of 0.0) for square root when
using a reciprocal square root estimate instruction.
Here, I've conditionalized the filtering out of denorms based on the function
having "denormal-fp-math"="ieee" in its attributes. The other options for this
attribute are 'preserve-sign' and 'positive-zero'.
So we don't generate this extra code by default with just '-ffast-math' (because
then there's no denormal attribute string at all), but it works if you specify
'-ffast-math -fdenormal-fp-math=ieee' from clang.
As noted in the review, there may be other problems in clang that affect the
results depending on platform (Linux x86 at least), but this should allow
creating the desired codegen.
Differential Revision: https://reviews.llvm.org/D42323
llvm-svn: 323981
Summary:
In Instruction Selection UpdateChains replaces all matched Nodes'
chain references including interior token factors and deletes them.
This may allow nodes which depend on these interior nodes but are not
part of the set of matched nodes to be left with a dangling dependence.
Avoid this by doing the replacement for matched non-TokenFactor nodes.
Fixes PR36164.
Reviewers: jonpa, RKSimon, bogner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D42754
llvm-svn: 323977
Summary:
This change expands the amount of registers stashed by the entry and
`__xray_CustomEvent` trampolines.
We've found that since the `__xray_CustomEvent` trampoline calls can show up in
situations where the scratch registers are being used, and since we don't
typically want to affect the code-gen around the disabled
`__xray_customevent(...)` intrinsic calls, that we need to save and restore the
state of even the scratch registers in the handling of these custom events.
Reviewers: pcc, pelikan, dblaikie, eizan, kpw, echristo, chandlerc
Reviewed By: echristo
Subscribers: chandlerc, echristo, hiraditya, davide, dblaikie, llvm-commits
Differential Revision: https://reviews.llvm.org/D40894
llvm-svn: 323940
Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
Summary:
Call MRI.freezeReservedRegs() on functions created during outlining so
that calls to isReserved() by the verifier called after this pass won't
assert.
Reviewers: MatzeB, qcolombet, paquette
Subscribers: mcrosier, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D42749
llvm-svn: 323905
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
CodeGenPrepare pass to be more aggressive in improving the source and destination alignments
of memcpy/memmove/memset by exploiting our new ability to record independent alignments
for each argument.
Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.
Reference
http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
llvm-svn: 323891
This commit came as a result for revert of patch r317579 (originally
committed as r317100). The patch made CFI instructions duplicable, because
their existence in the epilogue block was affecting the Tail duplication
pass. However, duplicating blocks with CFI instructions was an issue for
compact unwind info on Darwin, which is why the patch was reverted.
This patch allows duplicating tails with CFI instructions, though they are
not duplicable, by copying them 'manually'.
Patch by Djordje Kovacevic.
Differential Revision: https://reviews.llvm.org/D40979
llvm-svn: 323883
Summary:
Instruction Selection preserves relative orders of all nodes save
TokenFactors which we treat specially. As a result Node Ids for
TokenFactors may violate the topological ordering and should not be
considered as valid pruning candidates in predecessor search.
Fixes PR35316.
Reviewers: RKSimon, hfinkel
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42701
llvm-svn: 323880
In D41587, @mssimpso discovered that the order of some patterns for
AArch64 was sub-optimal. I thought a bit about how we could avoid that
case in the future. I do not think there is a need for evaluating all
patterns for now. But this patch adds an extra (expensive) check, that
evaluates the latencies of all patterns, and ensures that the latency
saved decreases for subsequent patterns.
This catches the sub-optimal order fixed in D41587, but I am not
entirely happy with the check, as it only applies to sub-optimal
patterns seen while building with EXPENSIVE_CHECKS on. It did not
discover any other sub-optimal pattern ordering.
Reviewers: Gerolf, spatel, mssimpso
Reviewed By: Gerolf, mssimpso
Differential Revision: https://reviews.llvm.org/D41766
llvm-svn: 323873
When selecting a split candidate for region splitting, the register allocator tries to predict which candidate will have the cheapest spill cost.
Global splitting may cause the creation of local intervals, and they might spill.
This patch makes RA take into account the spill cost of local split intervals in use blocks (we already take into account the spill cost in through blocks).
A flag ("-condsider-local-interval-cost") controls weather we do this advanced cost calculation (it's on by default for X86 target, off for the rest).
Differential Revision: https://reviews.llvm.org/D41585
Change-Id: Icccb8ad2dbf13124f5d97a18c67d95aa6be0d14d
llvm-svn: 323870
In Thumb 1, with the new ADDCARRY / SUBCARRY the scheduler may need to do
copies CPSR ↔ GPR but not all Thumb1 targets implement them.
The schedule can attempt, before attempting a copy, to clone the instructions
but it does not currently do that for nodes with input glue. In this patch we
introduce a target-hook to let the hook decide if a glued machinenode is still
eligible for copying. In this case these are ARM::tADCS and ARM::tSBCS .
As a follow-up of this change we should actually implement the copies for the
Thumb1 targets that do implement them and restrict the hook to the targets that
can't really do such copy as these clones are not ideal.
This change fixes PR35836.
Differential Revision: https://reviews.llvm.org/D42051
llvm-svn: 323857
Sometimes users do not specify data layout in LLVM assembly and let llc set the
data layout by target triple after loading the LLVM assembly.
Currently the parser checks alloca address space no matter whether the LLVM
assembly contains data layout definition, which causes false alarm since the
default data layout does not contain the correct alloca address space.
The parser also calls verifier to check debug info and updating invalid debug
info. Currently there is no way to let the verifier to check debug info only.
If the verifier finds non-debug-info issues the parser will fail.
For llc, the fix is to remove the check of alloca addr space in the parser and
disable updating debug info, and defer the updating of debug info and
verification to be after setting data layout of the IR by target.
For other llvm tools, since they do not override data layout by target but
instead can override data layout by a command line option, an argument for
overriding data layout is added to the parser. In cases where data layout
overriding is necessary for the parser, the data layout can be provided by
command line.
Differential Revision: https://reviews.llvm.org/D41832
llvm-svn: 323826
Introduce an extension to support passing linker options to the linker.
These would be ignored by older linkers, but newer linkers which support
this feature would be able to process the linker.
Emit a special discarded section `.linker-option`. The content of this
section is a pair of strings (key, value). The key is a type identifier for
the parameter. This allows for an argument free parameter that will be
processed by the linker with the value being the parameter. As an example,
`lib` identifies a library to be linked against, traditionally the `-l`
argument for Unix-based linkers with the parameter being the library name.
Thanks to James Henderson, Cary Coutant, Rafael Espinolda, Sean Silva
for the valuable discussion on the design of this feature.
llvm-svn: 323783
PR36061 showed that during the expansion of ISD::FPOWI, that there
was an incorrect zero extension of the integer argument which for
MIPS64 would then give incorrect results. Address this with the
existing mechanism for correcting sign extensions.
This resolves PR36061.
Thanks to James Cowgill for reporting the issue!
Reviewers: atanasyan, hfinkel
Differential Revision: https://reviews.llvm.org/D42537
llvm-svn: 323781
Legal if we have hardware support for floating point, libcalls
otherwise.
Also add the necessary support for libcalls in the legalizer helper.
llvm-svn: 323726