When -ffast-math is in effect (on Linux, at least), clang defines
__FINITE_MATH_ONLY__ > 0 when including <math.h>. This causes the
preprocessor to include <bits/math-finite.h>, which renames the sqrt functions.
For instance, "sqrt" is renamed as "__sqrt_finite".
This patch adds the 3 new names in such a way that they will be treated
as equivalent to their respective original names.
llvm-svn: 182739
reject things like: "for (auto Entry : SomeStringMap)". Previously
this would copy the value but not the tail allocated string data
(the key).
llvm-svn: 182713
Use a field in the SelectionDAGNode object to track its IR ordering.
This adds fields and utility classes without changing existing
interfaces or functionality.
llvm-svn: 182701
Other than recognizing the attribute, the patch does little else.
It changes the branch probability analyzer so that edges into
blocks postdominated by a cold function are given low weight.
Added analysis and code generation tests. Added documentation for the
new attribute.
llvm-svn: 182638
There was exactly one caller using this API right, the others were relying on
specific behavior of the default implementation. Since it's too hard to use it
right just remove it and standardize on the default behavior.
Defines away PR16132.
llvm-svn: 182636
This patch builds on some existing code to do CFG reconstruction from
a disassembled binary:
- MCModule represents the binary, and has a list of MCAtoms.
- MCAtom represents either disassembled instructions (MCTextAtom), or
contiguous data (MCDataAtom), and covers a specific range of addresses.
- MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is
backed by an MCTextAtom, and has the usual successors/predecessors.
- MCObjectDisassembler creates a module from an ObjectFile using a
disassembler. It first builds an atom for each section. It can also
construct the CFG, and this splits the text atoms into basic blocks.
MCModule and MCAtom were only sketched out; MCFunction and MCBB were
implemented under the experimental "-cfg" llvm-objdump -macho option.
This cleans them up for further use; llvm-objdump -d -cfg now generates
graphviz files for each function found in the binary.
In the future, MCObjectDisassembler may be the right place to do
"intelligent" disassembly: for example, handling constant islands is just
a matter of splitting the atom, using information that may be available
in the ObjectFile. Also, better initial atom formation than just using
sections is possible using symbols (and things like Mach-O's
function_starts load command).
This brings two minor regressions in llvm-objdump -macho -cfg:
- The printing of a relocation's referenced symbol.
- An annotation on loop BBs, i.e., which are their own successor.
Relocation printing is replaced by the MCSymbolizer; the basic CFG
annotation will be superseded by more related functionality.
llvm-svn: 182628
This is a basic first step towards symbolization of disassembled
instructions. This used to be done using externally provided (C API)
callbacks. This patch introduces:
- the MCSymbolizer class, that mimics the same functions that were used
in the X86 and ARM disassemblers to symbolize immediate operands and
to annotate loads based off PC (for things like c string literals).
- the MCExternalSymbolizer class, which implements the old C API.
- the MCRelocationInfo class, which provides a way for targets to
translate relocations (either object::RelocationRef, or disassembler
C API VariantKinds) to MCExprs.
- the MCObjectSymbolizer class, which does symbolization using what it
finds in an object::ObjectFile. This makes simple symbolization (with
no fancy relocation stuff) work for all object formats!
- x86-64 Mach-O and ELF MCRelocationInfos.
- A basic ARM Mach-O MCRelocationInfo, that provides just enough to
support the C API VariantKinds.
Most of what works in otool (the only user of the old symbolization API
that I know of) for x86-64 symbolic disassembly (-tvV) works, namely:
- symbol references: call _foo; jmp 15 <_foo+50>
- relocations: call _foo-_bar; call _foo-4
- __cf?string: leaq 193(%rip), %rax ## literal pool for "hello"
Stub support is the main missing part (because libObject doesn't know,
among other things, about mach-o indirect symbols).
As for the MCSymbolizer API, instead of relying on the disassemblers
to call the tryAdding* methods, maybe this could be done automagically
using InstrInfo? For instance, even though PC-relative LEAs are used
to get the address of string literals in a typical Mach-O file, a MOV
would be used in an ELF file. And right now, the explicit symbolization
only recognizes PC-relative LEAs. InstrInfo should have already have
most of what is needed to know what to symbolize, so this can
definitely be improved.
I'd also like to remove object::RelocationRef::getValueString (it seems
only used by relocation printing in objdump), as simply printing the
created MCExpr is definitely enough (and cleaner than string concats).
llvm-svn: 182625
- move AsmWriter.h from public headers into lib
- marked all AssemblyWriter functions as non-virtual; no need to override them
- DebugIR now "plugs into" AssemblyWriter with an AssemblyAnnotationWriter helper
- exposed flags to control hiding of a) debug metadata b) debug intrinsic calls
C/R: Paul Redmond
llvm-svn: 182617
When targeting the Darwin assembler, we need to generate markers ha16() and
lo16() to designate the high and low parts of a (symbolic) immediate. This
is necessary not just for plain symbols, but also for certain symbolic
expression, typically along the lines of ha16(A - B). The latter doesn't
work when simply using VariantKind flags on the symbol reference.
This is why the current back-end uses hacks (explicitly called out as such
via multiple FIXMEs) in the symbolLo/symbolHi print methods.
This patch uses target-defined MCExpr codes to represent the Darwin
ha16/lo16 constructs, following along the lines of the equivalent solution
used by the ARM back end to handle their :upper16: / :lower16: markers.
This allows us to get rid of special handling both in the symbolLo/symbolHi
print method and in the common code MCExpr::print routine. Instead, the
ha16 / lo16 markers are printed simply in a custom print routine for the
target MCExpr types. (As a result, the symbolLo/symbolHi print methods
can now replaced by a single printS16ImmOperand routine that also handles
symbolic operands.)
The patch also provides a EvaluateAsRelocatableImpl routine to handle
ha16/lo16 constructs. This is not actually used at the moment by any
in-tree code, but is provided as it makes merging into David Fang's
out-of-tree Mach-O object writer simpler.
Since there is no longer any need to treat VK_PPC_GAS_HA16 and
VK_PPC_DARWIN_HA16 differently, they are merged into a single
VK_PPC_ADDR16_HA (and likewise for the _LO16 types).
llvm-svn: 182616
There were bits & pieces of code lying around that may've given the
impression that debug info metadata supported the possibility that a
subprogram's type could be specified by a non-subroutine type describing
the return type of a void function. This support was incomplete &
unnecessary. Asserts & API have been changed to make the desired usage
more clear.
llvm-svn: 182532
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
llvm-svn: 182448
Solaris doesn't have an endian.h header, but SPARC is the only
big-endian architecture that runs Solaris, so just use that to detect
endianness at compile time.
llvm-svn: 182419
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407 and r182411. That first revision
broke builds because I forgot to move the conditional includes of
various POSIX headers from SectionMemoryManager into
RTDyldMemoryManager. Those includes are necessary because of how
getPointerToNamedFunction works around the glibc libc_nonshared.a thing.
The latter revision still broke things because I forgot to include
llvm/Config/config.h.
llvm-svn: 182418
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407. That revision broke builds because I
forgot to move the conditional includes of various POSIX headers from
SectionMemoryManager into RTDyldMemoryManager. Those includes are
necessary because of how getPointerToNamedFunction works around the
glibc libc_nonshared.a thing.
llvm-svn: 182411
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
llvm-svn: 182408
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
llvm-svn: 182407
This resolves the last of the PR14606 failures in the GDB 7.5 test
suite by implementing an optional name field for
DW_TAG_imported_modules/DIImportedEntities and using that to implement
C++ namespace aliases (eg: "namespace X = Y;").
llvm-svn: 182328
Other passes, PPC counter-loop formation for example, also need to add loop
preheaders outside of the regular loop simplification pass. This makes
InsertPreheaderForLoop a global function so that it can be used by other
passes.
No functionality change intended.
llvm-svn: 182299