This makes use of it slightly clearer, and makes it match the
same construct in the lld ELF linker.
Differential Revision: https://reviews.llvm.org/D68935
llvm-svn: 374869
A common pattern in Windows is to have all your precompiled headers
use an object named stdafx.obj. If you've got a project with many
different static libs, you might use a separate PCH for each one of
these.
During the final link step, a file from A might reference the PCH
object from A, but it will have the same name (stdafx.obj) as any
other PCH from another project. The only difference will be the
path. For example, A might be A/stdafx.obj while B is B/stdafx.obj.
The existing algorithm checks only the filename that was passed on
the command line (or stored in archive), but this is insufficient in
the case where relative paths are used, because depending on the
command line object file / library order, it might find the wrong
PCH object first resulting in a signature mismatch.
The fix here is to simply check whether the absolute path of the
PCH object (which is stored in the input obj file for the file that
references the PCH) *ends with* the full relative path of whatever
is specified on the command line (or is in the archive).
Differential Revision: https://reviews.llvm.org/D66431
llvm-svn: 374442
Similar to D67323, but for COFF. Many lld/COFF/ files already use
`namespace lld { namespace coff {`. Only a few need changing.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D68772
llvm-svn: 374314
David added the JamCRC implementation in r246590. More recently, Eugene
added a CRC-32 implementation in r357901, which falls back to zlib's
crc32 function if present.
These checksums are essentially the same, so having multiple
implementations seems unnecessary. This replaces the CRC-32
implementation with the simpler one from JamCRC, and implements the
JamCRC interface in terms of CRC-32 since this means it can use zlib's
implementation when available, saving a few bytes and potentially making
it faster.
JamCRC took an ArrayRef<char> argument, and CRC-32 took a StringRef.
This patch changes it to ArrayRef<uint8_t> which I think is the best
choice, and simplifies a few of the callers nicely.
Differential revision: https://reviews.llvm.org/D68570
llvm-svn: 374148
This avoids confusing contextless error messages such as "No such file
or directory" if e.g. the pdb output file should be written to a
nonexistent directory. (This can happen with linkrepro scripts, at least
old ones.)
Differential Revision: https://reviews.llvm.org/D66466
llvm-svn: 369425
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368936
This patch does the same thing as r365595 to other subdirectories,
which completes the naming style change for the entire lld directory.
With this, the naming style conversion is complete for lld.
Differential Revision: https://reviews.llvm.org/D64473
llvm-svn: 365730
Some versions of the Visual C++ 2015 runtime have line tables with the
subsection kind of 0x800000F2. In cvinfo.h, 0x80000000 is documented to
be DEBUG_S_IGNORE. This appears to implement the intended behavior.
llvm-svn: 363724
PDBs may not necessarily contain an IPI stream. Handle this case
gracefully.
The test case was verified to work with MS link.exe.
Patch by Vladimir Panteleev, with a small simplification
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D63178
llvm-svn: 363213
Summary:
- Fixes inline call frame line table display in windbg.
- Improve llvm-pdbutil to dump extra file ids.
- Warn on unknown subsections so we don't have this kind of bug in the
future.
Reviewers: inglorion, akhuang, aganea
Subscribers: eraman, zturner, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62701
llvm-svn: 362429
We need to have all input files ready before doing debuginfo type merging.
This patch is moving the late PDB type server discovery much earlier in the process, when the explicit inputs (OBJs, LIBs) are loaded.
The short term goal is to parallelize type merging.
Differential Revision: https://reviews.llvm.org/D60095
llvm-svn: 362393
We need to have all input files ready before doing debuginfo type merging.
This patch is moving the late PDB type server discovery much earlier in the process, when the explicit inputs (OBJs, LIBs) are loaded.
The short term goal is to parallelize type merging.
Differential Revision: https://reviews.llvm.org/D60095
llvm-svn: 361842
Shaves another 8 bytes off of SectionChunk, the most commonly allocated
type in LLD.
These indices are only valid after we've assigned chunks to output
sections and removed empty sections, so do that in a new pass.
Reviewers: ruiu, aganea
Differential Revision: https://reviews.llvm.org/D62356
llvm-svn: 361657
Summary:
Prior to this change, every implementation of writeTo would add
OutputSectionOff to the output section buffer start before writing data.
Instead, do this math in the caller, so that it can be written once
instead of many times.
The output section offset is always equivalent to the difference between
the chunk RVA and the output section RVA, so we can replace the one
remaining usage of OutputSectionOff with that subtraction.
This doesn't change the size of SectionChunk because of alignment
requirements, but I will rearrange the fields in a follow-up change to
accomplish that.
Reviewers: ruiu, aganea
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61696
llvm-svn: 360376
SectionChunk is one of the most frequently allocated data structures in
LLD, since there are about four per function when optimizations and
debug info are enabled (.text, .pdata, .xdata, .debug$S).
A PE COFF file cannot be larger than 2GB, so there is an inherent limit
on the length of the section name and the number of relocations.
Decompose the ArrayRef and StringRef into pointer and size, and put them
back together in the accessors for section name and relocation list.
I plan to gather complete performance numbers later by padding
SectionChunk with dead data and measuring performance after all the size
optimizations are done.
llvm-svn: 359923
Summary:
Now CVType and CVSymbol are effectively type-safe wrappers around
ArrayRef<uint8_t>. Make the kind() accessor load it from the
RecordPrefix, which is the same for types and symbols.
Reviewers: zturner, aganea
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60018
llvm-svn: 357658
Introduce a new TypeMerger class, out of some type-merge-specific structures from PDB.cpp
No changes intended / this is only moving code around.
This patch is step 3. in "Proposed commit strategy" in D59226
Differential Revision: https://reviews.llvm.org/D60070
llvm-svn: 357525
We introduce a new class hierarchy for debug types merging (in DebugTypes.h). The end-goal is to parallelize the type merging - please see the plan in D59226.
Previously, dependency discovery was done on the fly, much later, during the type merging loop. Unfortunately, parallelizing the type merging requires the dependencies to be merged in first, before any dependent ObjFile, thus this early discovery.
The overall intention for this path is to discover debug information dependencies at a much earlier stage, when processing input files. Currently, two types of dependency are supported: PDB type servers (when compiling with MSVC /Zi) and precompiled headers OBJs (when compiling with MSVC /Yc and /Yu). Once discovered, an explicit link is added into the dependent ObjFile, through the new debug types class hierarchy introduced in DebugTypes.h.
Differential Revision: https://reviews.llvm.org/D59053
llvm-svn: 357383
Generate import modules for each imported DLL, along with its symbol stream.
Also create COFF groups in the * Linker * module, one for each PartialSection (input, unmerged sections)
Currently COFF groups are disabled for MINGW because it significantly increases PDB sizes. We could enable that later with an option.
The overall objective for this change is to support code hot patching tools. Such tools need to know the import libraries used, from the PDB alone.
Differential Revision: https://reviews.llvm.org/D54802
llvm-svn: 357308
Summary:
This avoids allocating O(#relocs) of intermediate data for each section
when range extension thunks aren't needed for that section. This also
removes a std::vector from SectionChunk, which further reduces its size.
Instead, this change adds the range extension thunk symbols to the
object files that contain sections that need extension thunks. By adding
them to the symbol table of the parent object, that means they now have
a symbol table index. Then we can then modify the original relocation,
after copying it to read-write memory, to use the new symbol table
index.
This makes linking browser_tests.exe with no PDB 10.46% faster, moving
it from 11.364s to 10.288s averaged over five runs.
Reviewers: mstorsjo, ruiu
Subscribers: aganea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59902
llvm-svn: 357200
Take module DBI creation out of PDBLinker::addObjFile() into its own function.
This is groundwork towards parallelizable type merging, as proposed in D59226.
Differential Revision: https://reviews.llvm.org/D59261
llvm-svn: 356815
Before, empty debug streams were written as 8 bytes (4 bytes signature + 4 bytes for the GlobalRefs count).
With this patch, unused empty streams aren't emitted anymore. Modules now encode 65535 as an 'unused stream' value, by convention.
Also fix the * Linker * contrib section which wasn't correctly emitted previously.
Differential Revision: https://reviews.llvm.org/D59502
llvm-svn: 356395
/summary prints information about the data (OBJ/LIB/PDB) processed by LLD. The goal is have an estimate about the inputs and outputs, to better understand where the timings go.
Differential Revision: https://reviews.llvm.org/D58599
llvm-svn: 356188
In a previous patch, I made changes so that PDBs which were
generated on non-Windows platforms contained sensical paths
for the host. While this is an esoteric use case, we need
it to be supported for certain cross compilation scenarios
especially with LLDB, which can debug things on non-Windows
platforms.
However, this regressed a case where you specify /PDBSOURCEPATH
and use a windows-style path. Previously, we would still remove
dots and canonicalize slashes to backslashes, but since my
change intentionally tried to support non-backslash paths, this
was broken.
This patch fixes the situation by trying to guess which path
style the user is specifying when /PDBSOURCEPATH is passed.
It is intentionally conservative, erring on the side of a
Windows path style unless absolutely certain. All dots are
removed and slashes canonicalized to whatever the deduced
path style is after appending the file path to the /PDBSOURCEPATH
argument.
Differential Revision: https://reviews.llvm.org/D57769
llvm-svn: 353250
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Saves up to 1.3 sec on large PDBs.
Figures below are for the "Globals Stream Layout" pass:
Before This patch
Large EXE (PDB is ~2 GB) 3330 ms 2022 ms
Large EXE (PDB is ~2 GB) 2680 ms 1608 ms
Large DLL (PDB is ~1 GB) 1455 ms 938 ms
Large DLL (PDB is ~800 MB) 1215 ms 800 ms
Small DLL (PDB is ~200 MB) 224 ms 146 ms
Differential Revision: https://reviews.llvm.org/D56334
llvm-svn: 350452
In PDBs, symbol records must be aligned to four bytes. However, in the
object file, symbol records may not be aligned. MSVC does not pad out
symbol records to make sure they are aligned. That means the linker has
to do extra work to insert the padding. Currently, LLD calculates the
required space with alignment, and copies each record one at a time
while padding them out to the correct size. It has a fast path that
avoids this copy when the records are already aligned.
This change fixes a bug in that codepath so that the copy is actually
saved, and tweaks LLVM's symbol record emission to align symbol records.
Here's how things compare when doing a plain clang Release+PDB build:
- objs are 0.65% bigger (negligible)
- link is 3.3% faster (negligible)
- saves allocating 441MB
- new LLD high water mark is ~1.05GB
llvm-svn: 349431
When calling BinaryStreamArray::drop_front(), if the stream
is skewed it means we must never drop the first bytes of the
stream since offsets which occur in records assume the existence
of those bytes. So if we want to skip the first record in a
stream, then what we really want to do is just set the begin
pointer to the next record. But we shouldn't actually remove
those bytes from the underlying view of the data.
llvm-svn: 349066
Previously these were dropped. We now understand them sufficiently
well to start emitting them. From the debugger's perspective, this
now enables us to have debug info about typedefs (both global and
function-locally scoped)
Differential Revision: https://reviews.llvm.org/D55228
llvm-svn: 348306
Summary:
This speeds up linking clang.exe/pdb with /DEBUG:GHASH by 31%, from
12.9s to 9.8s.
Symbol records are typically small (16.7 bytes on average), but we
processed them one at a time. CVSymbol is a relatively "large" type. It
wraps an ArrayRef<uint8_t> with a kind an optional 32-bit hash, which we
don't need. Before this change, each DbiModuleDescriptorBuilder would
maintain an array of CVSymbols, and would write them individually with a
BinaryItemStream.
With this change, we now add symbols that happen to appear contiguously
in bulk. For each .debug$S section (roughly one per function), we
allocate two copies, one for relocation, and one for realignment
purposes. For runs of symbols that go in the module stream, which is
most symbols, we now add them as a single ArrayRef<uint8_t>, so the
vector DbiModuleDescriptorBuilder is roughly linear in the number of
.debug$S sections (O(# funcs)) instead of the number of symbol records
(very large).
Some stats on symbol sizes for the curious:
PDB size: 507M
sym bytes: 316,508,016
sym count: 18,954,971
sym byte avg: 16.7
As future work, we may be able to skip copying symbol records in the
linker for realignment purposes if we make LLVM write them aligned into
the object file. We need to double check that such symbol records are
still compatible with link.exe, but if so, it's definitely worth doing,
since my profile shows we spend 500ms in memcpy in the symbol merging
code. We could potentially cut that in half by saving a copy.
Alternatively, we could apply the relocations *after* we iterate the
symbols. This would require some careful re-engineering of the
relocation processing code, though.
Reviewers: zturner, aganea, ruiu
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D54554
llvm-svn: 347687
Don't use a uint32_t*, use a ulittle32_t* to make this correct
on big endian systems.
Patch by James Clarke
Differential Revision: https://reviews.llvm.org/D54421
llvm-svn: 347349
- Make mergeSymbolRecords a method of PDBLinker to reduce the number of
parameters it needs.
- Remove a stale FIXME comment about error handling. We already drop
unknown symbol records, log them, and continue.
- Update a comment about why we're copying the symbol record. We do it
to realign the record. We can already mutate the symbol record memory,
it's memory allocated by relocateDebugChunk.
- Avoid the extra `CVSymbol NewSym` variable. We can mutate Sym in
place, which is best, since we're mutating the underlying record anyway.
llvm-svn: 346817
This change allows for link-time merging of debugging information from
Microsoft precompiled types OBJs compiled with cl.exe /Z7 /Yc and /Yu.
This fixes llvm.org/PR34278
Differential Revision: https://reviews.llvm.org/D45213
llvm-svn: 346154
This a resubmission of a patch which was previously reverted
due to breaking several lld tests. The issues causing those
failures have been fixed, so the patch is now resubmitted.
---Original Commit Message---
While it doesn't make a *ton* of sense for POSIX paths to be
in PDBs, it's possible to occur in real scenarios involving
cross compilation.
The tools need to be able to handle this, because certain types
of debugging scenarios are possible without a running process
and so don't necessarily require you to be on a Windows system.
These include post-mortem debugging and binary forensics (e.g.
using a debugger to disassemble functions and examine symbols
without running the process).
There's changes in clang, LLD, and lldb in this patch. After
this the cross-platform disassembly and source-list tests pass
on Linux.
Furthermore, the behavior of LLD can now be summarized by a much
simpler rule than before: Unless you specify /pdbsourcepath and
/pdbaltpath, the PDB ends up with paths that are valid within
the context of the machine that the link is performed on.
Differential Revision: https://reviews.llvm.org/D53149
llvm-svn: 344377
This was originally causing some test failures on non-Windows
platforms, which required fixes in the compiler and linker. After
those fixes, however, other tests started failing. Reverting
temporarily until I can address everything.
llvm-svn: 344279
While it doesn't make a *ton* of sense for POSIX paths to be
in PDBs, it's possible to occur in real scenarios involving
cross compilation.
The tools need to be able to handle this, because certain types
of debugging scenarios are possible without a running process
and so don't necessarily require you to be on a Windows system.
These include post-mortem debugging and binary forensics (e.g.
using a debugger to disassemble functions and examine symbols
without running the process).
There's changes in clang, LLD, and lldb in this patch. After
this the cross-platform disassembly and source-list tests pass
on Linux.
Furthermore, the behavior of LLD can now be summarized by a much
simpler rule than before: Unless you specify /pdbsourcepath and
/pdbaltpath, the PDB ends up with paths that are valid within
the context of the machine that the link is performed on.
Differential Revision: https://reviews.llvm.org/D53149
llvm-svn: 344269
/pdbsourcepath: was added in https://reviews.llvm.org/D48882 to make it
possible to have relative paths in the debug info that clang-cl writes.
lld-link then makes the paths absolute at link time, which debuggers require.
This way, clang-cl's output is independent of the absolute path of the build
directory, which is useful for cacheability in distcc-like systems.
This patch extends /pdbsourcepath: (if passed) to also be used for:
1. The "cwd" stored in the env block in the pdb is /pdbsourcepath: if present
2. The "exe" stored in the env block in the pdb is made absolute relative
to /pdbsourcepath: instead of the cwd
3. The "pdb" stored in the env block in the pdb is made absolute relative
to /pdbsourcepath: instead of the cwd
4. For making absolute paths to .obj files referenced from the pdb
/pdbsourcepath: is now useful in three scenarios (the first one already working
before this change):
1. When building with full debug info, passing the real build dir to
/pdbsourcepath: allows having clang-cl's output to be independent
of the build directory path. This patch effectively doesn't change
behavior for this use case (assuming the cwd is the build dir).
2. When building without compile-time debug info but linking with /debug,
a fake fixed /pdbsourcepath: can be passed to get symbolized stacks
while making the pdb and exe independent of the current build dir.
For this two work, lld-link needs to be invoked with relative paths for
the lld-link invocation itself (for "exe"), for the pdb output name, the exe
output name (for "pdb"), and the obj input files, and no absolute path
must appear on the link command (for "cmd" in the pdb's env block).
Since no full debug info is present, it doesn't matter that the absolute
path doesn't exist on disk -- we only get symbols in stacks.
3. When building production builds with full debug info that don't have
local changes, and that get source indexed and their pdbs get uploaded
to a symbol server. /pdbsourcepath: again makes the build output independent
of the current directory, and the fixed path passed to /pdbsourcepath: can
be given the source indexing transform so that it gets mapped to a
repository path. This has the same requirements as 2.
This patch also makes it possible to create PDB files containing Windows-style
absolute paths when cross-compiling on a POSIX system.
Differential Revision: https://reviews.llvm.org/D53021
llvm-svn: 344061
This is a feature that MS link.exe lacks; it currently errors out on
such relocations, just like lld did before.
This allows linking clang.exe for ARM - practically, any image over
16 MB will likely run into the issue.
Differential Revision: https://reviews.llvm.org/D52156
llvm-svn: 342962
Previously, lld-link would use a random byte sequence as the PDB GUID. Instead,
use a hash of the PDB file contents.
To not disturb llvm-pdbutil pdb2yaml, the hash generation is an opt-in feature
on InfoStreamBuilder and ldb/COFF/PDB.cpp always sets it.
Since writing the PDB computes this ID which also goes in the exe, the PDB
writing code now must be called before writeBuildId(). writeBuildId() for that
reason is no longer included in the "Code Layout" timer.
Since the PDB GUID is now a function of the PDB contents, the PDB Age is always
set to 1. There was a long comment above loadExistingBuildId (now gone) about
how not changing the GUID and only incrementing the age was important, but
according to the discussion in PR35914 that comment was incorrect.
Differential Revision: https://reviews.llvm.org/D51956
llvm-svn: 342334
r342003 added support for emitting FPO data from the
DEBUG_S_FRAMEDATA subsection of the .debug$S section to the PDB
file. However, that is not the end of the story. FPO can end
up in two different destinations in a PDB, each corresponding to
a different FPO data source.
The case handled by r342003 involves copying data from the
DEBUG_S_FRAMEDATA subsection of the .debug$S section to the
"New FPO" stream in the PDB, which is then referred to by the
DBI stream. The case handled by this patch involves copying
records from the .debug$F section of an object file to the "FPO"
stream (or perhaps more aptly, the "Old FPO" stream) in the PDB
file, which is also referred to by the DBI stream.
The formats are largely similar, and the difference is mostly
only visible in masm generated object files, such as some of the
low-level CRT object files like memcpy. MASM doesn't appear to
support writing the DEBUG_S_FRAMEDATA subsection, and instead
just writes these records to the .debug$F section.
Although clang-cl does not emit a .debug$F section ever, lld still
needs to support it so we have good debugging for CRT functions.
Differential Revision: https://reviews.llvm.org/D51958
llvm-svn: 342080
- Log the reason for a PDB or precompiled-OBJ load failure
- Properly handle out-of-date PDB or precompiled-OBJ signature by displaying a corresponding error
- Slightly change behavior on PDB failure: any subsequent load attempt from another OBJ would result in the same error message being logged
- Slightly change behavior on PDB failure: retry with filename only if previous error was ENOENT ("no such file or directory")
- Tests: a. for native PDB errors; b. cover all the cases above
Differential Revision: https://reviews.llvm.org/D51559
llvm-svn: 341825
Following D50807, and heading towards D50664, this intermediary change does the following:
1. Upgrade all custom Error types in llvm/trunk/lib/DebugInfo/ to use the new StringError behavior (D50807).
2. Implement std::is_error_code_enum and make_error_code() for DebugInfo error enumerations.
3. Rename GenericError -> PDBError (the file will be renamed in a subsequent commit)
4. Update custom error messages to follow the same formatting: (\w\s*)+\.
5. Keep generic "file not found" (ENOENT) errors as they are in PDB code. Previously, there used to be a custom enumeration for that purpose.
6. Remove a few extraneous LF in log() implementations. Printing LF is a responsability at a higher level, not at the error level.
Differential Revision: https://reviews.llvm.org/D51499
llvm-svn: 341228
After fixing up the runtime pseudo relocation, the .refptr.<var>
will be a plain pointer with the same value as the IAT entry itself.
To save a little binary size and reduce the number of runtime pseudo
relocations, redirect references to the IAT entry (via the __imp_<var>
symbol) itself and discard the .refptr.<var> chunk (as long as the
same section chunk doesn't contain anything else than the single
pointer).
As there are now cases for both setting the Live variable to true
and false externally, remove the accessors and setters and just make
the variable public instead.
Differential Revision: https://reviews.llvm.org/D51456
llvm-svn: 341175
This patch changes relative path for source files in obj files to
absolute path in PDB when linking with added flag.
I will make obj file generated by clang-cl independent from build
directory for chromium build. But I don't want to confuse visual studio
debugger or require additional configuration. To attain this goal, I
added flag to convert relative source file path in obj to absolute path
when emitting PDB.
By removing absolute path from obj files, we can share build cache
between chromium developers even when they are doing debug build.
That will make build time faster.
More context:
https://bugs.chromium.org/p/chromium/issues/detail?id=712796https://groups.google.com/a/chromium.org/forum/#!topic/chromium-dev/5HXSVX-7fPc
llvm-svn: 337439
Previously we emitted 20-byte SHA1 hashes. This is overkill
for identifying debug info records, and has the negative side
effect of making object files bigger and links slower. By
using only the last 8 bytes of a SHA1, we get smaller object
files and ~10% faster links.
This modifies the format of the .debug$H section by adding a new
value for the hash algorithm field, so that the linker will still
work when its object files have an old format.
Differential Revision: https://reviews.llvm.org/D46855
llvm-svn: 332669
It's possible to have an empty object file, for example if you
just compile an empty .c file. This file won't have any sections
so asserting that a file has chunks is definitely wrong.
llvm-svn: 330461
Part of the DBI stream is a list of variable length structures
describing each module that contributes to the final executable.
One member of this structure is a section contribution entry that
describes the first section contribution in the output file for
the given module.
We have been leaving this structure unpopulated until now, so with
this patch it is now filled out correctly.
Differential Revision: https://reviews.llvm.org/D45832
llvm-svn: 330457
Summary:
This change does three things:
- Try to find the file and line number of an undefined symbol
reference by reading codeview debug info.
- Try to find the name of the function or global variable with the
undefined symbol reference by searching the object file's symbol
table.
- Prints the information in the same style as the ELF linker.
Differential Revision: https://reviews.llvm.org/D45467
llvm-svn: 330235
Using Config->is64() will treat ARM64 as Amd64, which is incorrect.
Furthermore, there are more esoteric architectures that could
theoretically be encountered. Just set it directly to the machine
type, which we already know anyway.
llvm-svn: 330157
Most of these are pretty trivial and obvious. Setting the toolchain
version to 14.11 is perhaps a little questionable, but we've been bitten
in the past where one of our version fields sidn't match MSVC's, and I
definitely don't want to go through that diagnosis again as it was
pretty time consuming and hard to track down.
I found all of these by using llvm-pdbutil export to dump the dbi and
pdb streams to a file, then using fc followed by llvm-pdbutil explain to
explain the mismatched bytes.
There are still some more, these are just the low hanging fruit.
Differential Revision: https://reviews.llvm.org/D45276
llvm-svn: 330130
This was reverted several times due to what ultimately turned out
to be incompatibilities in our serialized hash table format.
Several changes went in prior to this to fix those issues since
they were more fundamental and independent of supporting injected
sources, so now that those are fixed this change should hopefully
pass.
llvm-svn: 328363
When investigating bugs in PDB generation, the first step is
often to do the same link with link.exe and then compare PDBs.
But comparing PDBs is hard because two completely different byte
sequences can both be correct, so it hampers the investigation when
you also have to spend time figuring out not just which bytes are
different, but also if the difference is meaningful.
This patch fixes a couple of cases related to string table emission,
hash table emission, and the order in which we emit strings that
makes more of our bytes the same as the bytes generated by MS PDBs.
Differential Revision: https://reviews.llvm.org/D44810
llvm-svn: 328348
This is still failing on a different bot this time due to some
issue related to hashing absolute paths. Reverting until I can
figure it out.
llvm-svn: 328014
The issue causing this to fail in certain configurations
should be fixed.
It was due to the fact that DIA apparently expects there to be
a null string at ID 1 in the string table. I'm not sure why this
is important but it seems to make a difference, so set it.
llvm-svn: 328002
Natvis is a debug language supported by Visual Studio for
specifying custom visualizers. The /NATVIS option is an
undocumented link.exe flag which will take a .natvis file
and "inject" it into the PDB. This way, you can ship the
debug visualizers for a program along with the PDB, which
is very useful for postmortem debugging.
This is implemented by adding a new "named stream" to the
PDB with a special name of /src/files/<natvis file name>
and simply copying the contents of the xml into this file.
Additionally, we need to emit a single stream named
/src/headerblock which contains a hash table of embedded
files to records describing them.
This patch adds this functionality, including the /NATVIS
option to lld-link.
Differential Revision: https://reviews.llvm.org/D44328
llvm-svn: 327895
This makes the design a little more similar to the ELF linker and
should allow for features such as ARM range extension thunks to be
implemented more easily.
Differential Revision: https://reviews.llvm.org/D44501
llvm-svn: 327667
For now this is NFC, but this small refactor opens the door to
letting us embed a hash of the PDB in the build id field of the
PDB.
Differential Revision: https://reviews.llvm.org/D43913
llvm-svn: 326453
When merging in types from a type server PDB, we would use a
pointer into the type server PDB's mapped file buffer directly
to avoid copying data. However, we would close the type server
PDB after we finished merging in its types, which would unmap
all of its memory. This would lead to a use after free.
We fix this by making a strong reference in the PDBLinker class
to all referenced type server PDBs, thereby making it safe to
hold pointers into its memory mapped contents.
This fixes llvm.org/pr36455
Differential Revision: https://reviews.llvm.org/D43834
llvm-svn: 326345
Summary: Instead of fatal-ing out when missing a type server PDB, insead warn and cache the miss.
Reviewers: rnk, zturner
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42188
llvm-svn: 323893
There's some abstraction overhead in the underlying
mechanisms that were being used, and it was leading to an
abundance of small but not-free copies being made. This
showed up on a profile. Eliminating this and going back to
a low-level byte-based implementation speeds up lld with
/DEBUG between 10 and 15%.
Differential Revision: https://reviews.llvm.org/D42148
llvm-svn: 322871
The classes used to print and update time information are in
common, so other linkers could use this as well if desired.
Differential Revision: https://reviews.llvm.org/D41915
llvm-svn: 322736
This is not a record type that clang currently generates,
but it is a record that is encountered in object files generated
by cl. This record is unusual in that it refers directly to
the string table instead of indirectly to the string table via
the FileChecksums table. Because of this, it was previously
overlooked and we weren't remapping the string indices at all.
This would lead to crashes in MSVC when trying to display a
variable whose debug info involved an S_FILESTATIC.
Original bug report by Alexander Ganea
Differential Revision: https://reviews.llvm.org/D41718
llvm-svn: 321883
This adds the /DEBUG:GHASH option to LLD which will look for
the existence of .debug$H sections in linker inputs and use them
to accelerate type merging. The clang-cl side has already been
added, so this completes the work necessary to begin experimenting
with this feature.
Differential Revision: https://reviews.llvm.org/D40980
llvm-svn: 320719
A couple of places in LLD were passing references to
TypeTableCollections around, which makes it hard to change the
implementation at runtime. However, these cases only needed to
iterate over the types in the collection, and TypeCollection
already provides a handy abstract interface for this purpose.
By implementing this interface, we can get rid of the need to
pass TypeTableBuilder references around, which should allow us
to swap the implementation at runtime in subsequent patches.
llvm-svn: 319345
Now that we have only SymbolBody as the symbol class. So, "SymbolBody"
is a bit strange name now. This is a mechanical change generated by
perl -i -pe s/SymbolBody/Symbol/g $(git grep -l SymbolBody lld/ELF lld/COFF)
nd clang-format-diff.
Differential Revision: https://reviews.llvm.org/D39459
llvm-svn: 317370