The only difference between these two is that VectorizerReport adds a
vectorizer-specific prefix to its messages. When LAA is used in the
vectorizer context the prefix is added when we promote the
LoopAccessReport into a VectorizerReport via one of the constructors.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229897
When I split out LoopAccessReport from this, I need to create some temps
so constness becomes necessary.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229896
Also add pass name as an argument to VectorizationReport::emitAnalysis.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229894
This is a function pass that runs the analysis on demand. The analysis
can be initiated by querying the loop access info via LAA::getInfo. It
either returns the cached info or runs the analysis.
Symbolic stride information continues to reside outside of this analysis
pass. We may move it inside later but it's not a priority for me right
now. The idea is that Loop Distribution won't support run-time stride
checking at least initially.
This means that when querying the analysis, symbolic stride information
can be provided optionally. Whether stride information is used can
invalidate the cache entry and rerun the analysis. Note that if the
loop does not have any symbolic stride, the entry should be preserved
across Loop Distribution and LV.
Since currently the only user of the pass is LV, I just check that the
symbolic stride information didn't change when using a cached result.
On the LV side, LoopVectorizationLegality requests the info object
corresponding to the loop from the analysis pass. A large chunk of the
diff is due to LAI becoming a pointer from a reference.
A test will be added as part of the -analyze patch.
Also tested that with AVX, we generate identical assembly output for the
testsuite (including the external testsuite) before and after.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229893
LAA will be an on-demand analysis pass, so we need to cache the result
of the analysis. canVectorizeMemory is renamed to analyzeLoop which
computes the result. canVectorizeMemory becomes the query function for
the cached result.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229892
The transformation passes will query this and then emit them as part of
their own report. The currently only user LV is modified to do just
that.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229891
As LAA is becoming a pass, we can no longer pass the params to its
constructor. This changes the command line flags to have external
storage. These can now be accessed both from LV and LAA.
VectorizerParams is moved out of LoopAccessInfo in order to shorten the
code to access it.
This commits also has the fix (D7731) to the break dependence cycle
between the analysis and vector libraries.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229890
This reverts commit r229651.
I'd like to ultimately revert r229650 but this reformat stands in the
way. I'll reformat the affected files once the the loop-access pass is
fully committed.
llvm-svn: 229889
The RCIdentity root ("Reference Count Identity Root") of a value V is a
dominating value U for which retaining or releasing U is equivalent to
retaining or releasing V. In other words, ARC operations on V are
equivalent to ARC operations on U.
This is a useful property to ascertain since we can use this in the ARC
optimizer to make it easier to match up ARC operations by always mapping
ARC operations to RCIdentityRoots instead of pointers themselves. Then
we perform pairing of retains, releases which are applied to the same
RCIdentityRoot.
In general, the two ways that we see RCIdentical values in ObjC are via:
1. PointerCasts
2. Forwarding Calls that return their argument verbatim.
As such in ObjC, two RCIdentical pointers must always point to the same
memory location.
Previously this concept was implicit in the code and various methods
that dealt with this concept were given functional names that did not
conform to any name in the "ARC" model. This often times resulted in
code that was hard for the non-ARC acquanted to understand resulting in
unhappiness and confusion.
llvm-svn: 229796
Don't spend the entire iteration space in the scalar loop prologue if
computing the trip count overflows. This change also gets rid of the
backedge check in the prologue loop and the extra check for
overflowing trip-count.
Differential Revision: http://reviews.llvm.org/D7715
llvm-svn: 229731
r229622: "[LoopAccesses] Make VectorizerParams global"
r229623: "[LoopAccesses] Stash the report from the analysis rather than emitting it"
r229624: "[LoopAccesses] Cache the result of canVectorizeMemory"
r229626: "[LoopAccesses] Create the analysis pass"
r229628: "[LoopAccesses] Change debug messages from LV to LAA"
r229630: "[LoopAccesses] Add canAnalyzeLoop"
r229631: "[LoopAccesses] Add missing const to APIs in VectorizationReport"
r229632: "[LoopAccesses] Split out LoopAccessReport from VectorizerReport"
r229633: "[LoopAccesses] Add -analyze support"
r229634: "[LoopAccesses] Change LAA:getInfo to return a constant reference"
r229638: "Analysis: fix buildbots"
llvm-svn: 229650
The only difference between these two is that VectorizerReport adds a
vectorizer-specific prefix to its messages. When LAA is used in the
vectorizer context the prefix is added when we promote the
LoopAccessReport into a VectorizerReport via one of the constructors.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229632
When I split out LoopAccessReport from this, I need to create some temps
so constness becomes necessary.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229631
Also add pass name as an argument to VectorizationReport::emitAnalysis.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229628
This is a function pass that runs the analysis on demand. The analysis
can be initiated by querying the loop access info via LAA::getInfo. It
either returns the cached info or runs the analysis.
Symbolic stride information continues to reside outside of this analysis
pass. We may move it inside later but it's not a priority for me right
now. The idea is that Loop Distribution won't support run-time stride
checking at least initially.
This means that when querying the analysis, symbolic stride information
can be provided optionally. Whether stride information is used can
invalidate the cache entry and rerun the analysis. Note that if the
loop does not have any symbolic stride, the entry should be preserved
across Loop Distribution and LV.
Since currently the only user of the pass is LV, I just check that the
symbolic stride information didn't change when using a cached result.
On the LV side, LoopVectorizationLegality requests the info object
corresponding to the loop from the analysis pass. A large chunk of the
diff is due to LAI becoming a pointer from a reference.
A test will be added as part of the -analyze patch.
Also tested that with AVX, we generate identical assembly output for the
testsuite (including the external testsuite) before and after.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229626
blockNeedsPredication is in LoopAccess in order to share it with the
vectorizer. It's a utility needed by LoopAccess not strictly provided
by it but it's a good place to share it. This makes the function static
so that it no longer required to create an LoopAccessInfo instance in
order to access it from LV.
This was actually causing problems because it would have required
creating LAI much earlier that LV::canVectorizeMemory().
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229625
LAA will be an on-demand analysis pass, so we need to cache the result
of the analysis. canVectorizeMemory is renamed to analyzeLoop which
computes the result. canVectorizeMemory becomes the query function for
the cached result.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229624
The transformation passes will query this and then emit them as part of
their own report. The currently only user LV is modified to do just
that.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229623
As LAA is becoming a pass, we can no longer pass the params to its
constructor. This changes the command line flags to have external
storage. These can now be accessed both from LV and LAA.
VectorizerParams is moved out of LoopAccessInfo in order to shorten the
code to access it.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229622
LoopAccessAnalysis will be used as the name of the pass.
This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.
llvm-svn: 229621
InstCombiner::visitGetElementPtrInst was using getFirstNonPHI to compute the
insertion point, which caused the verifier to complain when a GEP was inserted
before a landingpad instruction. This commit fixes it to use getFirstInsertionPt
instead.
rdar://problem/19394964
llvm-svn: 229619
When visiting the initial list of "root" instructions (those which must always
be alive), for those that are integer-valued (such as invokes returning an
integer), we mark their bits as (initially) all dead (we might, obviously, find
uses of those bits later, but all bits are assumed dead until proven
otherwise). Don't do so, however, if we're already seen a use of those bits by
another root instruction (such as a store).
Fixes a miscompile of the sanitizer unit tests on x86_64.
Also, add a debug line for visiting the root instructions, and remove a debug
line which tried to print instructions being removed (printing dead
instructions is dangerous, and can sometimes crash).
llvm-svn: 229618
The problem was in store-sink barrier check.
Store sink barrier should be checked for ModRef (read-write) mode.
http://llvm.org/bugs/show_bug.cgi?id=22613
llvm-svn: 229495
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.
Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).
The motivation for this is a case like:
int __attribute__((const)) foo(int i);
int bar(int x) {
x |= (4 & foo(5));
x |= (8 & foo(3));
x |= (16 & foo(2));
x |= (32 & foo(1));
x |= (64 & foo(0));
x |= (128& foo(4));
return x >> 4;
}
As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).
I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).
I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark
llvm-svn: 229462
We won't find a root with index zero in any loop that we are able to reroll.
However, we may find one in a non-rerollable loop, so bail gracefully instead
of failing hard.
llvm-svn: 229406
If a PHI has no users, don't crash; bail gracefully. This shouldn't
happen often, but we can make no guarantees that previous passes didn't leave
dead code around.
llvm-svn: 229405