Commit Graph

206 Commits

Author SHA1 Message Date
Akira Hatanaka 3058d0f080 Let llc and opt override "-target-cpu" and "-target-features" via command line
options.

This commit fixes a bug in llc and opt where "-mcpu" and "-mattr" wouldn't
override function attributes "-target-cpu" and "-target-features" in the IR.

Differential Revision: http://reviews.llvm.org/D9537

llvm-svn: 236677
2015-05-06 23:54:14 +00:00
David Blaikie 23af64846f [opaque pointer type] Add textual IR support for explicit type parameter to the call instruction
See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
  if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
    return line
  return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
  sys.stdout.write(conv(re.search(pat, line), line))

llvm-svn: 235145
2015-04-16 23:24:18 +00:00
David Blaikie f72d05bc7b [opaque pointer type] Add textual IR support for explicit type parameter to gep operator
Similar to gep (r230786) and load (r230794) changes.

Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.

(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)

import fileinput
import sys
import re

rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)

def conv(match):
  line = match.group(1)
  line += match.group(4)
  line += ", "
  line += match.group(2)
  return line

line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
  sys.stdout.write(line[off:match.start()])
  sys.stdout.write(conv(match))
  off = match.end()
sys.stdout.write(line[off:])

llvm-svn: 232184
2015-03-13 18:20:45 +00:00
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Reid Kleckner 96d011315a Don't promote asynch EH invokes of nounwind functions to calls
If the landingpad of the invoke is using a personality function that
catches asynch exceptions, then it can catch a trap.

Also add some landingpads to invalid LLVM IR test cases that lack them.

Over-the-shoulder reviewed by David Majnemer.

llvm-svn: 228782
2015-02-11 01:23:16 +00:00
Chandler Carruth 9f8d9b613c [PM] Teach the module-to-function adaptor to not run function passes
over declarations.

This is both quite unproductive and causes things to crash, for example
domtree would just assert.

I've added a declaration and a domtree run to the basic high-level tests
for the new pass manager.

llvm-svn: 227724
2015-02-01 10:47:25 +00:00
Chandler Carruth e038552c8a [PM] Port TTI to the new pass manager, introducing a TargetIRAnalysis to
produce it.

This adds a function to the TargetMachine that produces this analysis
via a callback for each function. This in turn faves the way to produce
a *different* TTI per-function with the correct subtarget cached.

I've also done the necessary wiring in the opt tool to thread the target
machine down and make it available to the pass registry so that we can
construct this analysis from a target machine when available.

llvm-svn: 227721
2015-02-01 10:11:22 +00:00
Yunzhong Gao a8cf495a15 If we see UTF-8 BOM sequence at the beginning of a response file, we shall
remove these bytes before parsing.

Phabricator Revision: http://reviews.llvm.org/D7156

llvm-svn: 226988
2015-01-24 04:23:08 +00:00
Chandler Carruth 8ca43224db [PM] Port TargetLibraryInfo to the new pass manager, provided by the
TargetLibraryAnalysis pass.

There are actually no direct tests of this already in the tree. I've
added the most basic test that the pass manager bits themselves work,
and the TLI object produced will be tested by an upcoming patches as
they port passes which rely on TLI.

This is starting to point out the awkwardness of the invalidate API --
it seems poorly fitting on the *result* object. I suspect I will change
it to live on the analysis instead, but that's not for this change, and
I'd rather have a few more passes ported in order to have more
experience with how this plays out.

I believe there is only one more analysis required in order to start
porting instcombine. =]

llvm-svn: 226160
2015-01-15 11:39:46 +00:00
Chandler Carruth 703378f156 [PM] Remove the defunt CGSCC-specific debug flag.
Even before I sunk the debug flag into the opt tool this had been made
obsolete by factoring the pass and analysis managers into a single set
of templates that all used the core flag. No functionality changed here.

llvm-svn: 225842
2015-01-13 22:45:13 +00:00
Chandler Carruth 816702ffe0 [PM] Refactor the new pass manager to use a single template to implement
the generic functionality of the pass managers themselves.

In the new infrastructure, the pass "manager" isn't actually interesting
at all. It just pipelines a single chunk of IR through N passes. We
don't need to know anything about the IR or the passes to do this really
and we can replace the 3 implementations of the exact same functionality
with a single generic PassManager template, complementing the single
generic AnalysisManager template.

I've left typedefs in place to give convenient names to the various
obvious instantiations of the template.

With this, I think I've nuked almost all of the redundant logic in the
managers, and I think the overall design is actually simpler for having
single templates that clearly indicate there is no special logic here.
The logging is made somewhat more annoying by this change, but I don't
think the difference is worth having heavy-weight traits to help log
things.

llvm-svn: 225783
2015-01-13 11:13:56 +00:00
Chandler Carruth 7ad6d620b7 [PM] Fold all three analysis managers into a single AnalysisManager
template.

This consolidates three copies of nearly the same core logic. It adds
"complexity" to the ModuleAnalysisManager in that it makes it possible
to share a ModuleAnalysisManager across multiple modules... But it does
so by deleting *all of the code*, so I'm OK with that. This will
naturally make fixing bugs in this code much simpler, etc.

The only down side here is that we have to use 'typename' and 'this->'
in various places, and the implementation is lifted into the header.
I'll take that for the code size reduction.

The convenient names are still typedef-ed and used throughout so that
users can largely ignore this aspect of the implementation.

The follow-up change to this will do the exact same refactoring for the
PassManagers. =D

It turns out that the interesting different code is almost entirely in
the adaptors. At the end, that should be essentially all that is left.

llvm-svn: 225757
2015-01-13 02:51:47 +00:00
Chandler Carruth e5b0a9cf3d [PM] Give slightly less horrible names to the utility pass templates for
requiring and invalidating specific analyses. Also make their printed
names match their class names. Writing these out as prose really doesn't
make sense to me any more.

llvm-svn: 225346
2015-01-07 11:14:51 +00:00
Chandler Carruth fdb4180514 [PM] Fix a pretty nasty bug where the new pass manager would invalidate
passes too many time.

I think this is actually the issue that someone raised with me at the
developer's meeting and in an email, but that we never really got to the
bottom of. Having all the testing utilities made it much easier to dig
down and uncover the core issue.

When a pass manager is running many passes over a single function, we
need it to invalidate the analyses between each run so that they can be
re-computed as needed. We also need to track the intersection of
preserved higher-level analyses across all the passes that we run (for
example, if there is one module analysis which all the function analyses
preserve, we want to track that and propagate it). Unfortunately, this
interacted poorly with any enclosing pass adaptor between two IR units.
It would see the intersection of preserved analyses, and need to
invalidate any other analyses, but some of the un-preserved analyses
might have already been invalidated *and recomputed*! We would fail to
propagate the fact that the analysis had already been invalidated.

The solution to this struck me as really strange at first, but the more
I thought about it, the more natural it seemed. After a nice discussion
with Duncan about it on IRC, it seemed even nicer. The idea is that
invalidating an analysis *causes* it to be preserved! Preserving the
lack of result is trivial. If it is recomputed, great. Until something
*else* invalidates it again, we're good.

The consequence of this is that the invalidate methods on the analysis
manager which operate over many passes now consume their
PreservedAnalyses object, update it to "preserve" every analysis pass to
which it delivers an invalidation (regardless of whether the pass
chooses to be removed, or handles the invalidation itself by updating
itself). Then we return this augmented set from the invalidate routine,
letting the pass manager take the result and use the intersection of
*that* across each pass run to compute the final preserved set. This
accounts for all the places where the early invalidation of an analysis
has already "preserved" it for a future run.

I've beefed up the testing and adjusted the assertions to show that we
no longer repeatedly invalidate or compute the analyses across nested
pass managers.

llvm-svn: 225333
2015-01-07 01:58:35 +00:00
Chandler Carruth 4e107caf2e [PM] Introduce a utility pass that preserves no analyses.
Use this to test that path of invalidation. This test actually shows
redundant invalidation here that is really bad. I'm going to work on
fixing that next, but wanted to commit the test harness now that its all
working.

llvm-svn: 225257
2015-01-06 09:06:35 +00:00
Chandler Carruth ea368f1ee4 [PM] Simplify how we parse the outer layer of the pass pipeline text and
remove an extra, redundant pass manager wrapping every run.

I had kept seeing these when manually testing, but it was getting really
annoying and was going to cause problems with overly eager invalidation.
The root cause was an overly complex and unnecessary pile of code for
parsing the outer layer of the pass pipeline. We can instead delegate
most of this to the recursive pipeline parsing.

I've added some somewhat more basic and precise tests to catch this.

llvm-svn: 225253
2015-01-06 08:37:58 +00:00
Chandler Carruth 3472ffb37e [PM] Add a utility pass template that synthesizes the invalidation of
a specific analysis result.

This is quite handy to test things, and will also likely be very useful
for debugging issues. You could narrow down pass validation failures by
walking these invalidate pass runs up and down the pass pipeline, etc.
I've added support to the pass pipeline parsing to be able to create one
of these for any analysis pass desired.

Just adding this class uncovered one latent bug where the
AnalysisManager CRTP base class had a hard-coded Module type rather than
using IRUnitT.

I've also added tests for invalidation and caching of analyses in
a basic way across all the pass managers. These in turn uncovered two
more bugs where we failed to correctly invalidate an analysis -- its
results were invalidated but the key for re-running the pass was never
cleared and so it was never re-run. Quite nasty. I'm very glad to debug
this here rather than with a full system.

Also, yes, the naming here is horrid. I'm going to update some of the
names to be slightly less awful shortly. But really, I've no "good"
ideas for naming. I'll be satisfied if I can get it to "not bad".

llvm-svn: 225246
2015-01-06 04:49:44 +00:00
Chandler Carruth 0b576b377f [PM] Add a collection of no-op analysis passes and switch the new pass
manager tests to use them and be significantly more comprehensive.

This, naturally, uncovered a bug where the CGSCC pass manager wasn't
printing analyses when they were run.

The only remaining core manipulator is I think an invalidate pass
similar to the require pass. That'll be next. =]

llvm-svn: 225240
2015-01-06 02:50:06 +00:00
Chandler Carruth 628503e4d4 [PM] Add a utility to the new pass manager for generating a pass which
is a no-op other than requiring some analysis results be available.

This can be used in real pass pipelines to force the usually lazy
analysis running to eagerly compute something at a specific point, and
it can be used to test the pass manager infrastructure (my primary use
at the moment).

I've also added bit of pipeline parsing magic to support generating
these directly from the opt command so that you can directly use these
when debugging your analysis. The syntax is:

  require<analysis-name>

This can be used at any level of the pass manager. For example:

  cgscc(function(require<my-analysis>,no-op-function))

This would produce a no-op function pass requiring my-analysis, followed
by a fully no-op function pass, both of these in a function pass manager
which is nested inside of a bottom-up CGSCC pass manager which is in the
top-level (implicit) module pass manager.

I have zero attachment to the particular syntax I'm using here. Consider
it a straw man for use while I'm testing and fleshing things out.
Suggestions for better syntax welcome, and I'll update everything based
on any consensus that develops.

I've used this new functionality to more directly test the analysis
printing rather than relying on the cgscc pass manager running an
analysis for me. This is still minimally tested because I need to have
analyses to run first! ;] That patch is next, but wanted to keep this
one separate for easier review and discussion.

llvm-svn: 225236
2015-01-06 02:10:51 +00:00
Chandler Carruth 539dc4b9d5 [PM] Don't run the machinery of invalidating all the analysis passes
when all are being preserved.

We want to short-circuit this for a couple of reasons. One, I don't
really want passes to grow a dependency on actually receiving their
invalidate call when they've been preserved. I'm thinking about removing
this entirely. But more importantly, preserving everything is likely to
be the common case in a lot of scenarios, and it would be really good to
bypass all of the invalidation and preservation machinery there.
Avoiding calling N opaque functions to try to invalidate things that are
by definition still valid seems important. =]

This wasn't really inpsired by much other than seeing the spam in the
logging for analyses, but it seems better ot get it checked in rather
than forgetting about it.

llvm-svn: 225163
2015-01-05 12:32:11 +00:00
Chandler Carruth e5e8fb3bf6 [PM] Add names and debug logging for analysis passes to the new pass
manager.

This starts to allow us to test analyses more easily, but it's really
only the beginning. Some of the code here is still untestable without
manual changes to create analysis passes, but I wanted to factor it into
a small of chunks as possible.

Next up in order to be able to test things are, in no particular order:
- No-op analyses passes so we don't have to use real ones to exercise
  the pass maneger itself.
- Automatic way of generating dummy passes that require an analysis be
  run, including a variant that calls a 'print' method on a pass to make
  it even easier to print out the results of an analysis.
- Dummy passes that invalidate all analyses for their IR unit so we can
  test invalidation and re-runs.
- Automatic way to print each analysis pass as it is re-run.
- Automatic but optional verification of analysis passes everywhere
  possible.

I'm not claiming I'll get to all of these immediately, but that's what
is in the pipeline at some stage. I'm fleshing out exactly what I need
and what to prioritize by working on converting analyses and then trying
to test the conversion. =]

llvm-svn: 225162
2015-01-05 12:21:44 +00:00
Chandler Carruth 9c31db4f94 [PM] Wire up support for explicitly running the verifier pass.
The required functionality has been there for some time, but I never
managed to actually wire it into the command line registry of passes.
Let's do that.

llvm-svn: 225144
2015-01-05 00:08:53 +00:00
Jordan Rose ef78038775 [lit] Parse all strings as UTF-8 rather than ASCII.
As far as I can tell UTF-8 has been supported since the beginning of Python's
codec support, and it's the de facto standard for text these days, at least
for primarily-English text. This allows us to put Unicode into lit RUN lines.

rdar://problem/18311663

llvm-svn: 217688
2014-09-12 16:46:05 +00:00
Jordan Rose 88eb534517 Teach llvm-bcanalyzer to use one stream's BLOCKINFO to read another stream.
This allows streams that only use BLOCKINFO for debugging purposes to omit
the block entirely. As long as another stream is available with the correct
BLOCKINFO, the first stream can still be analyzed and dumped.

As part of this commit, BitstreamReader gets a move constructor and move
assignment operator, as well as a takeBlockInfo method.

llvm-svn: 216826
2014-08-30 17:07:55 +00:00
Rafael Espindola f9e52cf015 Don't internalize all but main by default.
This is mostly a cleanup, but it changes a fairly old behavior.

Every "real" LTO user was already disabling the silly internalize pass
and creating the internalize pass itself. The difference with this
patch is for "opt -std-link-opts" and the C api.

Now to get a usable behavior out of opt one doesn't need the funny
looking command line:

opt -internalize -disable-internalize -internalize-public-api-list=foo,bar -std-link-opts

llvm-svn: 214919
2014-08-05 20:10:38 +00:00
David Majnemer d1bea693e2 IR: Fold away compares between GV GEPs and GVs
A GEP of a non-weak global variable will not be equivalent to another
non-weak global variable or a GEP of such a variable.

Differential Revision: http://reviews.llvm.org/D4238

llvm-svn: 212360
2014-07-04 22:05:26 +00:00
Kevin Enderby 4fc2edb023 Change the default input for llvm-nm to be a.out instead of standard input
to match llvm-size and other UNIX systems for their nm(1).

Tweak test cases that used llvm-nm with standard input to add a "-" to
indicate that and add a test case to check the default of a.out for llvm-nm.

llvm-svn: 211529
2014-06-23 20:27:53 +00:00
Jingyue Wu baabe5091c Canonicalize addrspacecast ConstExpr between different pointer types
As a follow-up to r210375 which canonicalizes addrspacecast
instructions, this patch canonicalizes addrspacecast constant
expressions.

Given clang uses ConstantExpr::getAddrSpaceCast to emit addrspacecast
cosntant expressions, this patch is also a step towards having the
frontend emit canonicalized addrspacecasts.

Piggyback a minor refactor in InstCombineCasts.cpp

Update three affected tests in addrspacecast-alias.ll,
access-non-generic.ll and constant-fold-gep.ll and added one new test in
constant-fold-address-space-pointer.ll

llvm-svn: 211004
2014-06-15 21:40:57 +00:00
Alp Toker d3d017cf00 Reduce verbiage of lit.local.cfg files
We can just split targets_to_build in one place and make it immutable.

llvm-svn: 210496
2014-06-09 22:42:55 +00:00
Rafael Espindola 6b238633b7 Fix most of PR10367.
This patch changes the design of GlobalAlias so that it doesn't take a
ConstantExpr anymore. It now points directly to a GlobalObject, but its type is
independent of the aliasee type.

To avoid changing all alias related tests in this patches, I kept the common
syntax

@foo = alias i32* @bar

to mean the same as now. The cases that used to use cast now use the more
general syntax

@foo = alias i16, i32* @bar.

Note that GlobalAlias now behaves a bit more like GlobalVariable. We
know that its type is always a pointer, so we omit the '*'.

For the bitcode, a nice surprise is that we were writing both identical types
already, so the format change is minimal. Auto upgrade is handled by looking
through the casts and no new fields are needed for now. New bitcode will
simply have different types for Alias and Aliasee.

One last interesting point in the patch is that replaceAllUsesWith becomes
smart enough to avoid putting a ConstantExpr in the aliasee. This seems better
than checking and updating every caller.

A followup patch will delete getAliasedGlobal now that it is redundant. Another
patch will add support for an explicit offset.

llvm-svn: 209007
2014-05-16 19:35:39 +00:00
Diego Novillo dd49157db1 Do not make -pass-remarks additive.
Summary:
When I initially introduced -pass-remarks, I thought it would be a
neat idea to make it additive. So, if one used it as:

$ llc -pass-remarks=inliner --pass-remarks=loop.*

the compiler would build the regular expression '(inliner)|(loop.*)'.

The more I think about it, the more I regret it. This is not how
other flags work. The standard semantics are right-to-left overrides.

This is how clang interprets -Rpass. And I think the two should be
compatible in this respect.

Reviewers: qcolombet

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D3614

llvm-svn: 208122
2014-05-06 19:14:00 +00:00
Chandler Carruth 572e3407c3 [PM] Add a new-PM-style CGSCC pass manager using the newly added
LazyCallGraph analysis framework. Wire it up all the way through the opt
driver and add some very basic testing that we can build pass pipelines
including these components. Still a lot more to do in terms of testing
that all of this works, but the basic pieces are here.

There is a *lot* of boiler plate here. It's something I'm going to
actively look at reducing, but I don't have any immediate ideas that
don't end up making the code terribly complex in order to fold away the
boilerplate. Until I figure out something to minimize the boilerplate,
almost all of this is based on the code for the existing pass managers,
copied and heavily adjusted to suit the needs of the CGSCC pass
management layer.

The actual CG management still has a bunch of FIXMEs in it. Notably, we
don't do *any* updating of the CG as it is potentially invalidated.
I wanted to get this in place to motivate the new analysis, and add
update APIs to the analysis and the pass management layers in concert to
make sure that the *right* APIs are present.

llvm-svn: 206745
2014-04-21 11:12:00 +00:00
Diego Novillo c6574c1aa3 Add -pass-remarks flag to 'opt'.
Summary:
This adds support in 'opt' to filter pass remarks emitted by
optimization passes. A new flag -pass-remarks specifies which
passes should emit a diagnostic when LLVMContext::emitOptimizationRemark
is invoked.

This will allow the front end to simply pass along the regular
expression from its own -Rpass flag when launching the backend.

Depends on D3227.

Reviewers: qcolombet

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D3291

llvm-svn: 205775
2014-04-08 16:42:38 +00:00
Chandler Carruth 4d35631a6c [PM] Wire up the Verifier for the new pass manager and connect it to the
various opt verifier commandline options.

Mostly mechanical wiring of the verifier to the new pass manager.
Exercises one of the more unusual aspects of it -- a pass can be either
a module or function pass interchangably. If this is ever problematic,
we can make things more constrained, but for things like the verifier
where there is an "obvious" applicability at both levels, it seems
convenient.

This is the next-to-last piece of basic functionality left to make the
opt commandline driving of the new pass manager minimally functional for
testing and further development. There is still a lot to be done there
(notably the factoring into .def files to kill the current boilerplate
code) but it is relatively uninteresting. The only interesting bit left
for minimal functionality is supporting the registration of analyses.
I'm planning on doing that on top of the .def file switch mostly because
the boilerplate for the analyses would be significantly worse.

llvm-svn: 199646
2014-01-20 11:34:08 +00:00
Chandler Carruth b7bdfd65ac [PM] Wire up support for writing bitcode with new PM.
This moves the old pass creation functionality to its own header and
updates the callers of that routine. Then it adds a new PM supporting
bitcode writer to the header file, and wires that up in the opt tool.
A test is added that round-trips code into bitcode and back out using
the new pass manager.

llvm-svn: 199078
2014-01-13 07:38:24 +00:00
Chandler Carruth b353c3f7f2 [PM] Wire up support for printing assembly output from the opt command.
This lets us round-trip IR in the expected manner with the opt tool.

llvm-svn: 199075
2014-01-13 05:16:45 +00:00
Chandler Carruth 52eef8876e [PM] Add module and function printing passes for the new pass manager.
This implements the legacy passes in terms of the new ones. It adds
basic testing using explicit runs of the passes. Next up will be wiring
the basic output mechanism of opt up when the new pass manager is
engaged unless bitcode writing is requested.

llvm-svn: 199049
2014-01-12 12:15:39 +00:00
Chandler Carruth 6546cb6313 [PM] Fix a bunch of bugs I spotted by inspection when working on this
code. Copious tests added to cover these cases.

llvm-svn: 199039
2014-01-12 10:02:02 +00:00
Chandler Carruth d833098d17 [PM] Add support for parsing function passes and function pass manager
nests to the opt commandline support. This also showcases the
implicit-initial-manager support which will be most useful for testing.
There are several bugs that I spotted by inspection here that I'll fix
with test cases in subsequent commits.

llvm-svn: 199038
2014-01-12 09:34:22 +00:00
Chandler Carruth 258dbb3b12 [PM] Actually nest pass managers correctly when parsing the pass
pipeline string. Add tests that cover this now that we have execution
dumping in the pass managers.

llvm-svn: 199005
2014-01-11 12:06:47 +00:00
Chandler Carruth 66445382ff [PM] Add (very skeletal) support to opt for running the new pass
manager. I cannot emphasize enough that this is a WIP. =] I expect it
to change a great deal as things stabilize, but I think its really
important to get *some* functionality here so that the infrastructure
can be tested more traditionally from the commandline.

The current design is looking something like this:

  ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))'

So rather than custom-parsed flags, there is a single flag with a string
argument that is parsed into the pass pipeline structure. This makes it
really easy to have nice structural properties that are very explicit.
There is one obvious and important shortcut. You can start off the
pipeline with a pass, and the minimal context of pass managers will be
built around the entire specified pipeline. This makes the common case
for tests super easy:

  ./bin/opt -passes=instcombine,sroa,gvn

But this won't introduce any of the complexity of the fully inferred old
system -- we only ever do this for the *entire* argument, and we only
look at the first pass. If the other passes don't fit in the pass
manager selected it is a hard error.

The other interesting aspect here is that I'm not relying on any
registration facilities. Such facilities may be unavoidable for
supporting plugins, but I have alternative ideas for plugins that I'd
like to try first. My plan is essentially to build everything without
registration until we hit an absolute requirement.

Instead of registration of pass names, there will be a library dedicated
to parsing pass names and the pass pipeline strings described above.
Currently, this is directly embedded into opt for simplicity as it is
very early, but I plan to eventually pull this into a library that opt,
bugpoint, and even Clang can depend on. It should end up as a good home
for things like the existing PassManagerBuilder as well.

There are a bunch of FIXMEs in the code for the parts of this that are
just stubbed out to make the patch more incremental. A quick list of
what's coming up directly after this:
- Support for function passes and building the structured nesting.
- Support for printing the pass structure, and FileCheck tests of all of
  this code.
- The .def-file based pass name parsing.
- IR priting passes and the corresponding tests.

Some obvious things that I'm not going to do right now, but am
definitely planning on as the pass manager work gets a bit further:
- Pull the parsing into library, including the builders.
- Thread the rest of the target stuff into the new pass manager.
- Wire support for the new pass manager up to llc.
- Plugin support.

Some things that I'd like to have, but are significantly lower on my
priority list. I'll get to these eventually, but they may also be places
where others want to contribute:
- Adding nice error reporting for broken pass pipeline descriptions.
- Typo-correction for pass names.

llvm-svn: 198998
2014-01-11 08:16:35 +00:00
Yuchen Wu 5936caa18a Removed llvm-cov.test from Other folder.
More comprehensive llvm-cov tests were added to tools/llvm-cov.

llvm-svn: 197175
2013-12-12 20:29:54 +00:00
Rafael Espindola 6597992c69 Add a fixed version of r195470 back.
The fix is simply to use CurI instead of I when handling aliases to
avoid accessing a invalid iterator.

original message:

Convert linkonce* to weak* instead of strong.

Also refactor the logic into a helper function. This is an important improve
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.

llvm-svn: 195477
2013-11-22 17:58:12 +00:00
Rafael Espindola 77aa674cc4 Revert "Convert linkonce* to weak* instead of strong."
This reverts commit r195470.
Debugging failure in some bots.

llvm-svn: 195472
2013-11-22 17:09:34 +00:00
Rafael Espindola 5574032575 Convert linkonce* to weak* instead of strong.
Also refactor the logic into a helper function. This is an important improvement
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.

llvm-svn: 195470
2013-11-22 16:14:30 +00:00
Matt Arsenault b03bd4d96b Add addrspacecast instruction.
Patch by Michele Scandale!

llvm-svn: 194760
2013-11-15 01:34:59 +00:00
Alp Toker a2f1b8d238 Provide a test input for opt
This was only working previously due to a quirk in the way lit
concatenates script commands.

llvm-svn: 194078
2013-11-05 13:57:34 +00:00
Alp Toker 0d44e49e92 Quote potential shell expansions found in tests
llvm-svn: 193558
2013-10-28 23:37:45 +00:00