This is needed in clang so one can check if the object needs the
destructor called after its memory was freed. This is useful when
creating many APInt/APFloat objects with placement new, where the
overhead of tracking the pointers for cleanup is significant.
llvm-svn: 183100
index greater than the size of the vector is invalid. The shuffle may be
shrinking the size of the vector. Fixes a crash!
Also drop the maximum recursion depth of the safety check for this
optimization to five.
llvm-svn: 183080
The MOV64ri64i32 instruction required hacky MCInst lowering because it
was allocated as setting a GR64, but the eventual instruction ("movl")
only set a GR32. This converts it into a so-called "MOV32ri64" which
still accepts a (appropriate) 64-bit immediate but defines a GR32.
This is then converted to the full GR64 by a SUBREG_TO_REG operation,
thus keeping everyone happy.
This fixes a typo in the opcode field of the original patch, which
should make the legact JIT work again (& adds test for that problem).
llvm-svn: 183068
Fixes rdar:14036816, PR16130.
There is an opportunity to compute precise trip counts for 'or'
expressions and multi-exit loops.
rdar:14038809: Optimize trip count computation for multi-exit loops.
To do this we need to record the fact that ExitLimit assumes NSW. When
it does not we can safely assume that the loop trip count is the
minimum ExitLimt across all subexpressions and loop exits.
llvm-svn: 183060
Use ScalarEvolution's getBackedgeTakenCount API instead of getExitCount since
that is really what we want to know. Using the more specific getExitCount was
safe because we made sure that there is only one exiting block.
No functionality change.
llvm-svn: 183047
Account for the cost of scaling factor in Loop Strength Reduce when rating the
formulae. This uses a target hook.
The default implementation of the hook is: if the addressing mode is legal, the
scaling factor is free.
<rdar://problem/13806271>
llvm-svn: 183045
We check that instructions in the loop don't have outside users (except if
they are reduction values). Unfortunately, we skipped this check for
if-convertable PHIs.
Fixes PR16184.
llvm-svn: 183035
Namely, check if the target allows to fold more that one register in the
addressing mode and if yes, adjust the cost accordingly.
Prior to this commit, reg1 + scale * reg2 accesses were artificially preferred
to reg1 + reg2 accesses. Indeed, the cost model wrongly assumed that reg1 + reg2
needs a temporary register for the computation, whereas it was correctly
estimated for reg1 + scale * reg2.
<rdar://problem/13973908>
llvm-svn: 183021
NOTE: If this broke your out-of-tree backend, in *RegisterInfo.td, change
the instances of SubRegIndex that have a comps template arg to use the
ComposedSubRegIndex class instead.
In TableGen land, this adds Size and Offset attributes to SubRegIndex,
and the ComposedSubRegIndex class, for which the Size and Offset are
computed by TableGen. This also adds an accessor in MCRegisterInfo, and
Size/Offsets for the X86 and ARM subreg indices.
llvm-svn: 183020
These instructions are deprecated oddities, but we still need to be able to
disassemble (and reassemble) them if and when they're encountered.
Patch by Amaury de la Vieuville.
llvm-svn: 183011
The disassembly of VEXT instructions was too lax in the bits checked. This
fixes the case where the instruction affects Q-registers but a misaligned lane
was specified (should be UNDEFINED).
Patch by Amaury de la Vieuville
llvm-svn: 183003