These classes don't make any changes to IR and have no reason to be in
Transform/Utils. This patch moves them to Analysis folder. This will allow
us reusing these classes in some analyzes, like MustExecute.
llvm-svn: 341015
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
Summary:
Previously, `removeUnreachableBlocks` still returns true (which indicates the CFG is changed) even when all the unreachable blocks found is awaiting deletion in the DDT class.
This makes code pattern like
```
// Code modified from lib/Transforms/Scalar/SimplifyCFGPass.cpp
bool EverChanged = removeUnreachableBlocks(F, nullptr, DDT);
...
do {
EverChanged = someMightHappenModifications();
EverChanged |= removeUnreachableBlocks(F, nullptr, DDT);
} while (EverChanged);
```
become a dead loop.
Fix this by detecting whether a BasicBlock is already awaiting deletion.
Reviewers: kuhar, brzycki, dmgreen, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49738
llvm-svn: 338882
Summary:
This patch is the second in a series of patches related to the [[ http://lists.llvm.org/pipermail/llvm-dev/2018-June/123883.html | RFC - A new dominator tree updater for LLVM ]].
It converts passes (e.g. adce/jump-threading) and various functions which currently accept DDT in local.cpp and BasicBlockUtils.cpp to use the new DomTreeUpdater class.
These converted functions in utils can accept DomTreeUpdater with either UpdateStrategy and can deal with both DT and PDT held by the DomTreeUpdater.
Reviewers: brzycki, kuhar, dmgreen, grosser, davide
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48967
llvm-svn: 338814
The patch introduces loop analysis (VPLoopInfo/VPLoop) for VPBlockBases.
This analysis will be necessary to perform some H-CFG transformations and
detect and introduce regions representing a loop in the H-CFG.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48816
llvm-svn: 338346
The patch introduces dominator analysis for VPBlockBases and extend
VPlan's GraphTraits specialization with the required interfaces. Dominator
analysis will be necessary to perform some H-CFG transformations and
to introduce VPLoopInfo (LoopInfo analysis on top of the VPlan representation).
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48815
llvm-svn: 338310
Memory leaks in tests.
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/6289/steps/check-llvm%20asan/logs/stdio
Direct leak of 192 byte(s) in 1 object(s) allocated from:
#0 0x554ea8 in operator new(unsigned long) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/projects/compiler-rt/lib/asan/asan_new_delete.cc:106
#1 0x56cef1 in llvm::VPlanTestBase::doAnalysis(llvm::Function&) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanTestBase.h:53:14
#2 0x56bec4 in llvm::VPlanTestBase::buildHCFG(llvm::BasicBlock*) /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanTestBase.h:57:3
#3 0x571f1e in llvm::(anonymous namespace)::VPlanHCFGTest_testVPInstructionToVPRecipesInner_Test::TestBody() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/unittests/Transforms/Vectorize/VPlanHCFGTest.cpp:119:15
#4 0xed2291 in testing::Test::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc
#5 0xed44c8 in testing::TestInfo::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:2656:11
#6 0xed5890 in testing::TestCase::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:2774:28
#7 0xef3634 in testing::internal::UnitTestImpl::RunAllTests() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc:4649:43
#8 0xef27e0 in testing::UnitTest::Run() /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/src/gtest.cc
#9 0xebbc23 in RUN_ALL_TESTS /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/googletest/include/gtest/gtest.h:2233:46
#10 0xebbc23 in main /b/sanitizer-x86_64-linux-bootstrap/build/llvm/utils/unittest/UnitTestMain/TestMain.cpp:51
#11 0x7f65569592e0 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x202e0)
and more.
llvm-svn: 336718
This patch introduces a VPValue in VPBlockBase to represent the condition
bit that is used as successor selector when a block has multiple successors.
This information wasn't necessary until now, when we are about to introduce
outer loop vectorization support in VPlan code gen.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48814
llvm-svn: 336554
The replaceAllDbgUsesWith utility helps passes preserve debug info when
replacing one value with another.
This improves upon the existing insertReplacementDbgValues API by:
- Updating debug intrinsics in-place, while preventing use-before-def of
the replacement value.
- Falling back to salvageDebugInfo when a replacement can't be made.
- Moving the responsibiliy for rewriting llvm.dbg.* DIExpressions into
common utility code.
Along with the API change, this teaches replaceAllDbgUsesWith how to
create DIExpressions for three basic integer and pointer conversions:
- The no-op conversion. Applies when the values have the same width, or
have bit-for-bit compatible pointer representations.
- Truncation. Applies when the new value is wider than the old one.
- Zero/sign extension. Applies when the new value is narrower than the
old one.
Testing:
- check-llvm, check-clang, a stage2 `-g -O3` build of clang,
regression/unit testing.
- This resolves a number of mis-sized dbg.value diagnostics from
Debugify.
Differential Revision: https://reviews.llvm.org/D48676
llvm-svn: 336451
This reverts commit f976cf4cca0794267f28b54e468007fd476d37d9.
I am reverting this because it causes break in a few bots and its going
to take me sometime to look at this.
llvm-svn: 334993
Summary:
Simplify blockaddress usage before giving up in MergeBlockIntoPredecessor
This is a missing small optimization in MergeBlockIntoPredecessor.
This helps with one simplifycfg test which expects this case to be handled.
Reviewers: davide, spatel, brzycki, asbirlea
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48284
llvm-svn: 334992
This patch introduces a VPInstructionToVPRecipe transformation, which
allows us to generate code for a VPInstruction based VPlan re-using the
existing infrastructure.
Reviewers: dcaballe, hsaito, mssimpso, hfinkel, rengolin, mkuper, javed.absar, sguggill
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D46827
llvm-svn: 334969
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Reapply the patches with a fix. Thanks Ilya and Hans for the reproducer!
This reverts commit r330416.
The issue was that removing predecessors invalidated uses that we stored
for rewrite. The fix is to finish manipulating with CFG before we select
uses for rewrite.
llvm-svn: 330431
Revert r330413: "[SSAUpdaterBulk] Use SmallVector instead of DenseMap for storing rewrites."
Revert r330403 "Reapply "[PR16756] Use SSAUpdaterBulk in JumpThreading." one more time."
r330403 commit seems to crash clang during our integrate while doing PGO build with the following stacktrace:
#2 llvm::SSAUpdaterBulk::RewriteAllUses(llvm::DominatorTree*, llvm::SmallVectorImpl<llvm::PHINode*>*)
#3 llvm::JumpThreadingPass::ThreadEdge(llvm::BasicBlock*, llvm::SmallVectorImpl<llvm::BasicBlock*> const&, llvm::BasicBlock*)
#4 llvm::JumpThreadingPass::ProcessThreadableEdges(llvm::Value*, llvm::BasicBlock*, llvm::jumpthreading::ConstantPreference, llvm::Instruction*)
#5 llvm::JumpThreadingPass::ProcessBlock(llvm::BasicBlock*)
The crash happens while compiling 'lib/Analysis/CallGraph.cpp'.
r3340413 is reverted due to conflicting changes.
llvm-svn: 330416
Summary:
SSAUpdater is a bottleneck in a number of passes, and one of the reasons
is that it performs a lot of unnecessary computations (DT/IDF) over and
over again. This patch adds a new SSAUpdaterBulk that uses existing DT
and avoids recomputing IDF when possible.
Reviewers: dberlin, davide, MatzeB
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D44282
llvm-svn: 329643
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
In case PredBB == BB and StopAt == BB's terminator, StopAt != &*BI will
fail, because BB's terminator instruction gets replaced.
By using BB.getTerminator() we get the current terminator which we can use
to compare.
Reviewers: sanjoy, anna, reames
Reviewed By: anna
Differential Revision: https://reviews.llvm.org/D43822
llvm-svn: 326779
In stage2 -O3 builds of llc, this results in small but measurable
increases in the number of variables with locations, and in the number
of unique source variables overall.
(According to llvm-dwarfdump --statistics, there are 123 additional
variables with locations, which is just a 0.006% improvement).
The size of the .debug_loc section of the llc dsym increases by 0.004%.
llvm-svn: 326629
In stage2 -O3 builds of llc, this results in a 0.3% increase in the
number of variables with locations, and a 0.2% increase in the number of
unique source variables overall.
The size of the .debug_loc section of the llc dsym increases by 0.5%.
llvm-svn: 326621
Removes verifyDomTree, using assert(verify()) everywhere instead, and
changes verify a little to always run IsSameAsFreshTree first in order
to print good output when we find errors. Also adds verifyAnalysis for
PostDomTrees, which will allow checking of PostDomTrees it the same way
we check DomTrees and MachineDomTrees.
Differential Revision: https://reviews.llvm.org/D41298
llvm-svn: 326315
With my bad luck I separately implemented the DomTree preservation
for ConstantFoldTerminator before r322401 was committed. Commit the
tests which I think still provide some value.
llvm-svn: 322683
We were not doing that for large shadow granularity. Also add more
stack frame layout tests for large shadow granularity.
Differential Revision: https://reviews.llvm.org/D39475
llvm-svn: 318581
Summary: For some irreducible CFG the domtree nodes might be dead, do not update domtree for dead nodes.
Reviewers: kuhar, dberlin, hfinkel
Reviewed By: kuhar
Subscribers: llvm-commits, mcrosier
Differential Revision: https://reviews.llvm.org/D38960
llvm-svn: 316582
Summary:
If the extracted region has multiple exported data flows toward the same BB which is not included in the region, correct resotre instructions and PHI nodes won't be generated inside the exitStub. The solution is simply put the restore instructions right after the definition of output values instead of putting in exitStub.
Unittest for this bug is included.
Author: myhsu
Reviewers: chandlerc, davide, lattner, silvas, davidxl, wmi, kuhar
Subscribers: dberlin, kuhar, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D37902
llvm-svn: 315041
Summary:
And now that we no longer have to explicitly free() the Loop instances, we can
(with more ease) use the destructor of LoopBase to do what LoopBase::clear() was
doing.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D38201
llvm-svn: 314375
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ if (DII == InsertBefore)
+ InsertBefore = &*std::next(InsertBefore->getIterator());
DII->eraseFromParent();
I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.
The reduced C test case for this was:
void useit(int*);
static inline void inlineme() {
int x[2];
useit(x);
}
void f() {
inlineme();
inlineme();
}
llvm-svn: 313905
Summary:
See comment for why I think this is a good idea.
This change also:
- Removes an SCEV test case. The SCEV test was not testing anything useful (most of it was `#if 0` ed out) and it would need to be updated to deal with a private ~Loop::Loop.
- Updates the loop pass manager test case to deal with a private ~Loop::Loop.
- Renames markAsRemoved to markAsErased to contrast with removeLoop, via the usual remove vs. erase idiom we already have for instructions and basic blocks.
Reviewers: chandlerc
Subscribers: mehdi_amini, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D37996
llvm-svn: 313695
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Summary:
This is an addon to the change rl304488 cloning fixes. (Originally rl304226 reverted rl304228 and reapplied rl304488 https://reviews.llvm.org/D33655)
rl304488 works great when DILocalVariables that comes from the inlined function has a 'unique-ed' type, but,
in the case when the variable type is distinct we will create a second DILocalVariable in the scope of the original function that was inlined.
Consider cloning of the following function:
```
define private void @f() !dbg !5 {
%1 = alloca i32, !dbg !11
call void @llvm.dbg.declare(metadata i32* %1, metadata !14, metadata !12), !dbg !18
ret void, !dbg !18
}
!14 = !DILocalVariable(name: "inlined", scope: !15, file: !6, line: 5, type: !17) ; came from an inlined function
!15 = distinct !DISubprogram(name: "inlined", linkageName: "inlined", scope: null, file: !6, line: 8, type: !7, isLocal: true, isDefinition: true, scopeLine: 9, isOptimized: false, unit: !0, variables: !16)
!16 = !{!14}
!17 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "some_struct", size: 32, align: 32)
```
Without this fix, when function 'f' is cloned, we will create another DILocalVariable for "inlined", due to its type being distinct.
```
define private void @f.1() !dbg !23 {
%1 = alloca i32, !dbg !26
call void @llvm.dbg.declare(metadata i32* %1, metadata !28, metadata !12), !dbg !30
ret void, !dbg !30
}
!14 = !DILocalVariable(name: "inlined", scope: !15, file: !6, line: 5, type: !17)
!15 = distinct !DISubprogram(name: "inlined", linkageName: "inlined", scope: null, file: !6, line: 8, type: !7, isLocal: true, isDefinition: true, scopeLine: 9, isOptimized: false, unit: !0, variables: !16)
!16 = !{!14}
!17 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "some_struct", size: 32, align: 32)
;
!28 = !DILocalVariable(name: "inlined", scope: !15, file: !6, line: 5, type: !29) ; OOPS second DILocalVariable
!29 = distinct !DICompositeType(tag: DW_TAG_structure_type, name: "some_struct", size: 32, align: 32)
```
Now we have two DILocalVariable for "inlined" within the same scope. This result in assert in AsmPrinter/DwarfDebug.h:131: void llvm::DbgVariable::addMMIEntry(const llvm::DbgVariable &): Assertion `V.Var == Var && "conflicting variable"' failed.
(Full example: See: https://bugs.llvm.org/show_bug.cgi?id=33492)
In this change we prevent duplication of types so that when a metadata for DILocalVariable is cloned it will get uniqued to the same metadate node as an original variable.
Reviewers: loladiro, dblaikie, aprantl, echristo
Reviewed By: loladiro
Subscribers: EricWF, llvm-commits
Differential Revision: https://reviews.llvm.org/D35106
llvm-svn: 307418
clang-format (https://reviews.llvm.org/D33932) to keep primary headers
at the top and handle new utility headers like 'gmock' consistently with
other utility headers.
No other change was made. I did no manual edits, all of this is
clang-format.
This should allow other changes to have more clear and focused diffs,
and is especially motivated by moving some headers into more focused
libraries.
llvm-svn: 304786
Summary:
This problem stems from the fact that instructions are allocated using new
in LLVM, i.e. there is no relationship that can be derived by just looking
at the pointer value.
This interface dispatches to appropriate dominance check given 2 instructions,
i.e. in case the instructions are in the same basic block, ordered basicblock
(with instruction numbering and caching) are used. Otherwise, dominator tree
is used.
This is a preparation patch for https://reviews.llvm.org/D32720
Reviewers: dberlin, hfinkel, davide
Subscribers: davide, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D33380
llvm-svn: 304764
This was rL304226, reverted in 304228 due to a clang assertion failure
on the build bots. That problem should have been addressed by clang
commit rL304470.
llvm-svn: 304488
Summary:
In rL302576, DISubprograms gained the constraint that a !dbg attachments to functions must
have a 1:1 mapping to DISubprograms. As part of that change, the function cloning support
was adjusted to attempt to enforce this invariant during cloning. However, there
were several problems with the implementation. Part of these were fixed in rL304079.
However, there was a more fundamental problem with these changes, namely that it
bypasses the matadata value map, causing the cloned metadata to be a mix of metadata
pointing to the new suprogram (where manual code was added to fix those up) and the
old suprogram (where this was not the case). This mismatch could cause a number of
different assertion failures in the DWARF emitter. Some of these are given at
https://github.com/JuliaLang/julia/issues/22069, but some others have been observed
as well. Attempt to rectify this by partially reverting the manual DI metadata fixup,
and instead using the standard value map approach. To retain the desired semantics
of not duplicating the compilation unit and inlined subprograms, explicitly freeze
these in the value map.
Reviewers: dblaikie, aprantl, GorNishanov, echristo
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33655
llvm-svn: 304226
Summary:
Implements PR889
Removing the virtual table pointer from Value saves 1% of RSS when doing
LTO of llc on Linux. The impact on time was positive, but too noisy to
conclusively say that performance improved. Here is a link to the
spreadsheet with the original data:
https://docs.google.com/spreadsheets/d/1F4FHir0qYnV0MEp2sYYp_BuvnJgWlWPhWOwZ6LbW7W4/edit?usp=sharing
This change makes it invalid to directly delete a Value, User, or
Instruction pointer. Instead, such code can be rewritten to a null check
and a call Value::deleteValue(). Value objects tend to have their
lifetimes managed through iplist, so for the most part, this isn't a big
deal. However, there are some places where LLVM deletes values, and
those places had to be migrated to deleteValue. I have also created
llvm::unique_value, which has a custom deleter, so it can be used in
place of std::unique_ptr<Value>.
I had to add the "DerivedUser" Deleter escape hatch for MemorySSA, which
derives from User outside of lib/IR. Code in IR cannot include MemorySSA
headers or call the MemoryAccess object destructors without introducing
a circular dependency, so we need some level of indirection.
Unfortunately, no class derived from User may have any virtual methods,
because adding a virtual method would break User::getHungOffOperands(),
which assumes that it can find the use list immediately prior to the
User object. I've added a static_assert to the appropriate OperandTraits
templates to help people avoid this trap.
Reviewers: chandlerc, mehdi_amini, pete, dberlin, george.burgess.iv
Reviewed By: chandlerc
Subscribers: krytarowski, eraman, george.burgess.iv, mzolotukhin, Prazek, nlewycky, hans, inglorion, pcc, tejohnson, dberlin, llvm-commits
Differential Revision: https://reviews.llvm.org/D31261
llvm-svn: 303362
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>
Differential Revision: https://reviews.llvm.org/D32975
This reapplies r302469 with a fix for a bot failure (reparentDebugInfo
now checks for the case the orig and new function are identical).
llvm-svn: 302576
This caused PR32977.
Original commit message:
> Make it illegal for two Functions to point to the same DISubprogram
>
> As recently discussed on llvm-dev [1], this patch makes it illegal for
> two Functions to point to the same DISubprogram and updates
> FunctionCloner to also clone the debug info of a function to conform
> to the new requirement. To simplify the implementation it also factors
> out the creation of inlineAt locations from the Inliner into a
> general-purpose utility in DILocation.
>
> [1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
> <rdar://problem/31926379>
>
> Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302533
As recently discussed on llvm-dev [1], this patch makes it illegal for
two Functions to point to the same DISubprogram and updates
FunctionCloner to also clone the debug info of a function to conform
to the new requirement. To simplify the implementation it also factors
out the creation of inlineAt locations from the Inliner into a
general-purpose utility in DILocation.
[1] http://lists.llvm.org/pipermail/llvm-dev/2017-May/112661.html
<rdar://problem/31926379>
Differential Revision: https://reviews.llvm.org/D32975
llvm-svn: 302469
This should simplify the call sites, which typically want to tweak one
attribute at a time. It should also avoid creating ephemeral
AttributeLists that live forever.
llvm-svn: 300718
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
llvm-svn: 299980
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
Add updater to passes that now need it.
Move around code in MemorySSA to expose needed functions.
Summary: Mostly cleanup
Reviewers: george.burgess.iv
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30221
llvm-svn: 295887
Summary:
This lets one add aliasing stores to the updater.
(i'm next going to move the creation/etc functions to the updater)
Reviewers: george.burgess.iv
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30154
llvm-svn: 295677
Summary:
JumpThreading for guards feature has been reverted at https://reviews.llvm.org/rL295200
due to the following problem: the feature used the following algorithm for detection of
diamond patters:
1. Find a block with 2 predecessors;
2. Check that these blocks have a common single parent;
3. Check that the parent's terminator is a branch instruction.
The problem is that these checks are insufficient. They may pass for a non-diamond
construction in case if those two predecessors are actually the same block. This may
happen if parent's terminator is a br (either conditional or unconditional) to a block
that ends with "switch" instruction with exactly two branches going to one block.
This patch re-enables the JumpThreading for guards and fixes this issue by adding the
check that those found predecessors are actually different blocks. This guarantees that
parent's terminator is a conditional branch with exactly 2 different successors, which
is now ensured by assertions. It also adds two more tests for this situation (with parent's
terminator being a conditional and an unconditional branch).
Patch by Max Kazantsev!
Reviewers: anna, sanjoy, reames
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30036
llvm-svn: 295410
Summary:
This patch allows JumpThreading also thread through guards.
Virtually, guard(cond) is equivalent to the following construction:
if (cond) { do something } else {deoptimize}
Yet it is not explicitly converted into IFs before lowering.
This patch enables early threading through guards in simple cases.
Currently it covers the following situation:
if (cond1) {
// code A
} else {
// code B
}
// code C
guard(cond2)
// code D
If there is implication cond1 => cond2 or !cond1 => cond2, we can transform
this construction into the following:
if (cond1) {
// code A
// code C
} else {
// code B
// code C
guard(cond2)
}
// code D
Thus, removing the guard from one of execution branches.
Patch by Max Kazantsev!
Reviewers: reames, apilipenko, igor-laevsky, anna, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29620
llvm-svn: 294617
into CRTP base classes.
This can sometimes happen and not cause an immediate failure when the
derived class is, itself, a template. You can end up essentially calling
methods on the wrong derived type but a type where many things will
appear to "work".
To fail fast and with a clear error message we can use a static_assert,
but we have to stash that static_assert inside a method body or nested
type that won't need to be completed while building the base class. I've
tried to pick a reasonably small number of places that seemed like they
would definitely get triggered on use.
This is the last of the patch series defending against this that I have
planned, so far no bugs other than the original were found.
llvm-svn: 294275
Summary: Extend the MemorySSAUpdater API to allow movement to arbitrary places
Reviewers: davide, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29239
llvm-svn: 293363
insertUse, moveBefore and moveAfter operations.
Summary:
This creates a basic MemorySSA updater that handles arbitrary
insertion of uses and defs into MemorySSA, as well as arbitrary
movement around the CFG. It replaces the current splice API.
It can be made to handle arbitrary control flow changes.
Currently, it uses the same updater algorithm from D28934.
The main difference is because MemorySSA is single variable, we have
the complete def and use list, and don't need anyone to give it to us
as part of the API. We also have to rename stores below us in some
cases.
If we go that direction in that patch, i will merge all the updater
implementations (using an updater_traits or something to provide the
get* functions we use, called read*/write* in that patch).
Sadly, the current SSAUpdater algorithm is way too slow to use for
what we are doing here.
I have updated the tests we have to basically build memoryssa
incrementally using the updater api, and make sure it still comes out
the same.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29047
llvm-svn: 293356
Summary:
This is the first in a series of patches to add a simple, generalized updater to MemorySSA.
For MemorySSA, every def is may-def, instead of the normal must-def.
(the best way to think of memoryssa is "everything is really one variable, with different versions of that variable at different points in the program).
This means when updating, we end up having to do a bunch of work to touch defs below and above us.
In order to support this quickly, i have ilist'd all the defs for each block. ilist supports tags, so this is quite easy. the only slightly messy part is that you can't have two iplists for the same type that differ only whether they have the ownership part enabled or not, because the traits are for the value type.
The verifiers have been updated to test that the def order is correct.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29046
llvm-svn: 293085
This adds the last remaining core feature of the loop pass pipeline in
the new PM and removes the last of the really egregious hacks in the
LICM tests.
Sadly, this requires really substantial changes in the unittests in
order to provide and maintain simplified loops. This is particularly
hard because for example LoopSimplify will try to fold undef branches to
an ideal direction and simplify the loop accordingly.
Differential Revision: https://reviews.llvm.org/D28766
llvm-svn: 292709
mark it as never invalidated in the new PM.
The old PM already required this to work, and after a discussion with
Hal this seems to really be the only sensible answer. The cache
gracefully degrades as the IR is mutated, and most things which do this
should already be incrementally updating the cache.
This gets rid of a bunch of logic preserving and testing the
invalidation of this analysis.
llvm-svn: 292039
the latter to the Transforms library.
While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.
Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.
We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.
This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.
I haven't split the unittest though because testing one component
without the other seems nearly intractable.
Differential Revision: https://reviews.llvm.org/D28452
llvm-svn: 291662
After r289755, the AssumptionCache is no longer needed. Variables affected by
assumptions are now found by using the new operand-bundle-based scheme. This
new scheme is more computationally efficient, and also we need much less
code...
llvm-svn: 289756
This way it will be easier to expand DIFile (e.g., to contain checksum) without the need to modify the createCompileUnit() API.
Reviewers: llvm-commits, rnk
Differential Revision: https://reviews.llvm.org/D27762
llvm-svn: 289702
This is pure refactoring. NFC.
This change moves the FunctionComparator (together with the GlobalNumberState
utility) in to a separate file so that it can be used by other passes.
For example, the SwiftMergeFunctions pass in the Swift compiler:
https://github.com/apple/swift/blob/master/lib/LLVMPasses/LLVMMergeFunctions.cpp
Details of the change:
*) The big part is just moving code out of MergeFunctions.cpp into FunctionComparator.h/cpp
*) Make FunctionComparator member functions protected (instead of private)
so that a derived comparator class can use them.
Following refactoring helps to share code between the base FunctionComparator
class and a derived class:
*) Add a beginCompare() function
*) Move some basic function property comparisons into a separate function compareSignature()
*) Do the GEP comparison inside cmpOperations() which now has a new
needToCmpOperands reference parameter
https://reviews.llvm.org/D25385
llvm-svn: 286632
Summary:
This allows us to mark when uses have been optimized.
This lets us avoid rewalking (IE when people call getClobberingAccess on everything), and also
enables us to later relax the requirement of use optimization during updates with less cost.
Reviewers: george.burgess.iv
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25172
llvm-svn: 284771
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
We now build MemorySSA in its ctor, instead of waiting until the user
calls MemorySSA::getWalker. This silently changed our unittests, since
we add BasicAA to AAResults *after* constructing MemorySSA (...but
before calling MemorySSA::getWalker).
None of them broke because we do most of our "did this get optimized
correctly?" tests in .ll files.
llvm-svn: 283158
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280700
Use ADT/BitmaskEnum for DINode::DIFlags for the following purposes:
* Get rid of unsigned int for flags to avoid problems on platforms with sizeof(int) < 4
* Flags are now strongly typed
Patch by: Victor Leschuk <vleschuk@gmail.com>
Differential Revision: https://reviews.llvm.org/D23766
llvm-svn: 280686
Summary: No functional changes, just refactoring to make D23947 simpler.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23954
llvm-svn: 279982
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279373
Summary:
We are going to combine poisoning of red zones and scope poisoning.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23623
llvm-svn: 279020
This is a follow-up to r277637. It teaches MemorySSA that invariant
loads (and loads of provably constant memory) are always liveOnEntry.
llvm-svn: 277640
This fixes a bug where we'd sometimes cache overly-conservative results
with our walker. This bug was made more obvious by r277480, which makes
our cache far more spotty than it was. Test case is llvm-unit, because
we're likely going to use CachingWalker only for def optimization in the
future.
The bug stems from that there was a place where the walker assumed that
`DefNode.Last` was a valid target to cache to when failing to optimize
phis. This is sometimes incorrect if we have a cache hit. The fix is to
use the thing we *can* assume is a valid target to cache to. :)
llvm-svn: 277559
The bitset metadata currently used in LLVM has a few problems:
1. It has the wrong name. The name "bitset" refers to an implementation
detail of one use of the metadata (i.e. its original use case, CFI).
This makes it harder to understand, as the name makes no sense in the
context of virtual call optimization.
2. It is represented using a global named metadata node, rather than
being directly associated with a global. This makes it harder to
manipulate the metadata when rebuilding global variables, summarise it
as part of ThinLTO and drop unused metadata when associated globals are
dropped. For this reason, CFI does not currently work correctly when
both CFI and vcall opt are enabled, as vcall opt needs to rebuild vtable
globals, and fails to associate metadata with the rebuilt globals. As I
understand it, the same problem could also affect ASan, which rebuilds
globals with a red zone.
This patch solves both of those problems in the following way:
1. Rename the metadata to "type metadata". This new name reflects how
the metadata is currently being used (i.e. to represent type information
for CFI and vtable opt). The new name is reflected in the name for the
associated intrinsic (llvm.type.test) and pass (LowerTypeTests).
2. Attach metadata directly to the globals that it pertains to, rather
than using the "llvm.bitsets" global metadata node as we are doing now.
This is done using the newly introduced capability to attach
metadata to global variables (r271348 and r271358).
See also: http://lists.llvm.org/pipermail/llvm-dev/2016-June/100462.html
Differential Revision: http://reviews.llvm.org/D21053
llvm-svn: 273729
We recently made MemorySSA own the walker it creates. As a part of this,
the MSSA test fixture was changed to have a `Walker*` instead of a
`unique_ptr<Walker>`. So, we no longer need to do `&*Walker` in order to
get a `Walker*`.
llvm-svn: 273189
Add support for the new pass manager to MemorySSA pass.
Change MemorySSA to be computed eagerly upon construction.
Change MemorySSAWalker to be owned by the MemorySSA object that creates
it.
Reviewers: dberlin, george.burgess.iv
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19664
llvm-svn: 271432
Remove the ModuleLevelChanges argument, and the ability to create new
subprograms for cloned functions. The latter was added without review in
r203662, but it has no in-tree clients (all non-test callers pass false
for ModuleLevelChanges [1], so it isn't reachable outside of tests). It
also isn't clear that adding a duplicate subprogram to the compile unit is
always the right thing to do when cloning a function within a module. If
this functionality comes back it should be accompanied with a more concrete
use case.
Furthermore, all in-tree clients add the returned function to the module.
Since that's pretty much the only sensible thing you can do with the function,
just do that in CloneFunction.
[1] http://llvm-cs.pcc.me.uk/lib/Transforms/Utils/CloneFunction.cpp/rCloneFunction
Differential Revision: http://reviews.llvm.org/D18628
llvm-svn: 269110
This patch fixes two somewhat related bugs in MemorySSA's caching
walker. These bugs were found because D19695 brought up the problem
that we'd have defs cached to themselves, which is incorrect.
The bugs this fixes are:
- We would sometimes skip the nearest clobber of a MemoryAccess, because
we would query our cache for a given potential clobber before
checking if the potential clobber is the clobber we're looking for.
The cache entry for the potential clobber would point to the nearest
clobber *of the potential clobber*, so if that was a cache hit, we'd
ignore the potential clobber entirely.
- There are times (sometimes in DFS, sometimes in the getClobbering...
functions) where we would insert cache entries that say a def
clobbers itself.
There's a bit of common code between the fixes for the bugs, so they
aren't split out into multiple commits.
This patch also adds a few unit tests, and refactors existing tests a
bit to reduce the duplication of setup code.
llvm-svn: 268087
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
Stop memoizing ConstantAsMetadata in ValueMapper::mapMetadata. Now we
have to recompute it, but these metadata aren't particularly common, and
it restricts the lifetime of the Metadata map unnecessarily.
(The motivation is that I have a patch which uses a single Metadata map
for the lifetime of IRMover. Mehdi profiled r266446 with the patch
applied and we saw a pretty big speedup in lib/Linker.)
llvm-svn: 266513
This reverts commit r266507, reapplying r266503 (and r266505
"ValueMapper: Use API from r266503 in unit tests, NFC") completely
unchanged.
I reverted because of a bot failure here:
http://lab.llvm.org:8011/builders/lld-x86_64-freebsd/builds/16810/
However, looking more closely, the failure was from a host-compiler
crash (clang 3.7.1) when building:
lib/CodeGen/AsmPrinter/CMakeFiles/LLVMAsmPrinter.dir/DwarfAccelTable.cpp.o
I didn't modify that file, or anything it includes, with that commit.
The next build (which hadn't picked up my revert) got past it:
http://lab.llvm.org:8011/builders/lld-x86_64-freebsd/builds/16811/
I think this was just unfortunate timing. I suppose the bot must be
flakey.
llvm-svn: 266510
This reverts commit r266503, in case it's the root cause of this bot
failure:
http://lab.llvm.org:8011/builders/lld-x86_64-freebsd/builds/16810
I'm also reverting r266505 -- "ValueMapper: Use API from r266503 in unit
tests, NFC" -- since it's in the way.
llvm-svn: 266507
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
At the same time, fixes InstructionsTest::CastInst unittest: yes
you can leave the IR in an invalid state and exit when you don't
destroy the context (like the global one), no longer now.
This is the first part of http://reviews.llvm.org/D19094
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266379
Fix a major bug from r265456. Although it's now much rarer, ValueMapper
sometimes has to duplicate cycles. The
might-transitively-reference-a-temporary counts don't decrement on their
own when there are cycles, and you need to call MDNode::resolveCycles to
fix it.
r265456 was checking the input nodes to see if they were unresolved.
This is useless; they should never be unresolved. Instead we should
check the output nodes and resolve cycles on them.
llvm-svn: 266258
Prevent the Metadata side-table in ValueMap from growing unnecessarily
when RF_NoModuleLevelChanges. As a drive-by, make ValueMap::hasMD,
which apparently had no users until I used it here for testing, actually
compile.
llvm-svn: 265828
Stop adding MDString to the Metadata section of the ValueMap in
MapMetadata. It blows up the size of the map for no benefit, since we
can always return quickly anyway.
There is a potential follow-up that I don't think I'll push on right
away, but maybe someone else is interested: stop checking for a
pre-mapped MDString, and move the `isa<MDString>()` checks in
Mapper::mapSimpleMetadata and MDNodeMapper::getMappedOp in front of the
`VM.getMappedMD()` calls. While this would preclude explicitly
remapping MDStrings it would probably be a little faster.
llvm-svn: 265827
This reverts commit r265765, reapplying r265759 after changing a call from
LocalAsMetadata::get to ValueAsMetadata::get (and adding a unit test). When a
local value is mapped to a constant (like "i32 %a" => "i32 7"), the new debug
intrinsic operand may no longer be pointing at a local.
http://lab.llvm.org:8080/green/job/clang-stage1-configure-RA_build/19020/
The previous coommit message follows:
--
This is a partial re-commit -- maybe more of a re-implementation -- of
r265631 (reverted in r265637).
This makes RF_IgnoreMissingLocals behave (almost) consistently between
the Value and the Metadata hierarchy. In particular:
- MapValue returns nullptr or "metadata !{}" for missing locals in
MetadataAsValue/LocalAsMetadata bridging paris, depending on
the RF_IgnoreMissingLocals flag.
- MapValue doesn't memoize LocalAsMetadata-related results.
- MapMetadata no longer deals with LocalAsMetadata or
RF_IgnoreMissingLocals at all. (This wasn't in r265631 at all, but
I realized during testing it would make the patch simpler with no
loss of generality.)
r265631 went too far, making both functions universally ignore
RF_IgnoreMissingLocals. This broke building (e.g.) compiler-rt.
Reassociate (and possibly other passes) don't currently maintain
dominates-use invariants for metadata operands, resulting in IR like
this:
define void @foo(i32 %arg) {
call void @llvm.some.intrinsic(metadata i32 %x)
%x = add i32 1, i32 %arg
}
If the inliner chooses to inline @foo into another function, then
RemapInstruction will call `MapValue(metadata i32 %x)` and assert that
the return is not nullptr.
I've filed PR27273 to add a Verifier check and fix the underlying
problem in the optimization passes.
As a workaround, return `!{}` instead of nullptr for unmapped
LocalAsMetadata when RF_IgnoreMissingLocals is unset. Otherwise, match
the behaviour of r265631.
Original commit message:
ValueMapper: Make LocalAsMetadata match function-local Values
Start treating LocalAsMetadata similarly to function-local members of
the Value hierarchy in MapValue and MapMetadata.
- Don't memoize them.
- Return nullptr if they are missing.
This also cleans up ConstantAsMetadata to stop listening to the
RF_IgnoreMissingLocals flag.
llvm-svn: 265768
This is a partial re-commit -- maybe more of a re-implementation -- of
r265631 (reverted in r265637).
This makes RF_IgnoreMissingLocals behave (almost) consistently between
the Value and the Metadata hierarchy. In particular:
- MapValue returns nullptr or "metadata !{}" for missing locals in
MetadataAsValue/LocalAsMetadata bridging paris, depending on
the RF_IgnoreMissingLocals flag.
- MapValue doesn't memoize LocalAsMetadata-related results.
- MapMetadata no longer deals with LocalAsMetadata or
RF_IgnoreMissingLocals at all. (This wasn't in r265631 at all, but
I realized during testing it would make the patch simpler with no
loss of generality.)
r265631 went too far, making both functions universally ignore
RF_IgnoreMissingLocals. This broke building (e.g.) compiler-rt.
Reassociate (and possibly other passes) don't currently maintain
dominates-use invariants for metadata operands, resulting in IR like
this:
define void @foo(i32 %arg) {
call void @llvm.some.intrinsic(metadata i32 %x)
%x = add i32 1, i32 %arg
}
If the inliner chooses to inline @foo into another function, then
RemapInstruction will call `MapValue(metadata i32 %x)` and assert that
the return is not nullptr.
I've filed PR27273 to add a Verifier check and fix the underlying
problem in the optimization passes.
As a workaround, return `!{}` instead of nullptr for unmapped
LocalAsMetadata when RF_IgnoreMissingLocals is unset. Otherwise, match
the behaviour of r265631.
Original commit message:
ValueMapper: Make LocalAsMetadata match function-local Values
Start treating LocalAsMetadata similarly to function-local members of
the Value hierarchy in MapValue and MapMetadata.
- Don't memoize them.
- Return nullptr if they are missing.
This also cleans up ConstantAsMetadata to stop listening to the
RF_IgnoreMissingLocals flag.
llvm-svn: 265759
Remove the assertion that disallowed the combination, since
RF_IgnoreMissingLocals should have no effect on globals. As it happens,
RF_NullMapMissingGlobalValues asserted in MapValue(Constant*,...), so I
also changed a cast to a cast_or_null to get my test passing.
llvm-svn: 265633
Start treating LocalAsMetadata similarly to function-local members of
the Value hierarchy in MapValue and MapMetadata.
- Don't memoize them.
- Return nullptr if they are missing.
This also cleans up ConstantAsMetadata to stop listening to the
RF_IgnoreMissingLocals flag.
llvm-svn: 265631
This commit completely rewrites Mapper::mapMetadata (the implementation
of llvm::MapMetadata) using an iterative algorithm. The guts of the new
algorithm are in MDNodeMapper::map, the entry function in a new class.
Previously, Mapper::mapMetadata performed a recursive exploration of the
graph with eager "just in case there's a reason" malloc traffic.
The new algorithm has these benefits:
- New nodes and temporaries are not created eagerly.
- Uniquing cycles are not duplicated (see new unit test).
- No recursion.
Given a node to map, it does this:
1. Use a worklist to perform a post-order traversal of the transitively
referenced unmapped nodes.
2. Track which nodes will change operands, and which will have new
addresses in the mapped scheme. Propagate the changes through the
POT until fixed point, to pick up uniquing cycles that need to
change.
3. Map all the distinct nodes without touching their operands. If
RF_MoveDistinctMetadata, they get mapped to themselves; otherwise,
they get mapped to clones.
4. Map the uniqued nodes (bottom-up), lazily creating temporaries for
forward references as needed.
5. Remap the operands of the distinct nodes.
Mehdi helped me out by profiling this with -flto=thin. On his workload
(importing/etc. for opt.cpp), MapMetadata sped up by 15%, contributed
about 50% less to persistent memory, and made about 100x fewer calls to
malloc. The speedup is less than I'd hoped. The profile mainly blames
DenseMap lookups; perhaps there's a way to reduce them (e.g., by
disallowing remapping of MDString).
It would be nice to break the strange remaining recursion on the Value
side: MapValue => materializeInitFor => RemapInstruction => MapValue. I
think we could do this by having materializeInitFor return a worklist of
things to be remapped.
llvm-svn: 265456
Support seeding a ValueMap with nullptr for Metadata entries, a
situation I didn't consider in the Metadata/Value split.
I added a ValueMapper::getMappedMD accessor that returns an
Optional<Metadata*> with the mapped (possibly null) metadata. IRMover
needs to use this to avoid modifying the map when it's checking for
unneeded subprograms. I updated a call from bugpoint since I find the
new code clearer.
llvm-svn: 265228
Commit r260791 contained an error in that it would introduce a cross-module
reference in the old module. It also introduced O(N^2) complexity in the
module cloner by requiring the entire module to be visited for each function.
Fix both of these problems by avoiding use of the CloneDebugInfoMetadata
function (which is only designed to do intra-module cloning) and cloning
function-attached metadata in the same way that we clone all other metadata.
Differential Revision: http://reviews.llvm.org/D18583
llvm-svn: 264935
parts of the AA interface out of the base class of every single AA
result object.
Because this logic reformulates the query in terms of some other aspect
of the API, it would easily cause O(n^2) query patterns in alias
analysis. These could in turn be magnified further based on the number
of call arguments, and then further based on the number of AA queries
made for a particular call. This ended up causing problems for Rust that
were actually noticable enough to get a bug (PR26564) and probably other
places as well.
When originally re-working the AA infrastructure, the desire was to
regularize the pattern of refinement without losing any generality.
While I think it was successful, that is clearly proving to be too
costly. And the cost is needless: we gain no actual improvement for this
generality of making a direct query to tbaa actually be able to
re-use some other alias analysis's refinement logic for one of the other
APIs, or some such. In short, this is entirely wasted work.
To the extent possible, delegation to other API surfaces should be done
at the aggregation layer so that we can avoid re-walking the
aggregation. In fact, this significantly simplifies the logic as we no
longer need to smuggle the aggregation layer into each alias analysis
(or the TargetLibraryInfo into each alias analysis just so we can form
argument memory locations!).
However, we also have some delegation logic inside of BasicAA and some
of it even makes sense. When the delegation logic is baking in specific
knowledge of aliasing properties of the LLVM IR, as opposed to simply
reformulating the query to utilize a different alias analysis interface
entry point, it makes a lot of sense to restrict that logic to
a different layer such as BasicAA. So one aspect of the delegation that
was in every AA base class is that when we don't have operand bundles,
we re-use function AA results as a fallback for callsite alias results.
This relies on the IR properties of calls and functions w.r.t. aliasing,
and so seems a better fit to BasicAA. I've lifted the logic up to that
point where it seems to be a natural fit. This still does a bit of
redundant work (we query function attributes twice, once via the
callsite and once via the function AA query) but it is *exactly* twice
here, no more.
The end result is that all of the delegation logic is hoisted out of the
base class and into either the aggregation layer when it is a pure
retargeting to a different API surface, or into BasicAA when it relies
on the IR's aliasing properties. This should fix the quadratic query
pattern reported in PR26564, although I don't have a stand-alone test
case to reproduce it.
It also seems general goodness. Now the numerous AAs that don't need
target library info don't carry it around and depend on it. I think
I can even rip out the general access to the aggregation layer and only
expose that in BasicAA as it is the only place where we re-query in that
manner.
However, this is a non-trivial change to the AA infrastructure so I want
to get some additional eyes on this before it lands. Sadly, it can't
wait long because we should really cherry pick this into 3.8 if we're
going to go this route.
Differential Revision: http://reviews.llvm.org/D17329
llvm-svn: 262490
Summary:
This adds the beginning of an update API to preserve MemorySSA. In particular,
this patch adds a way to remove memory SSA accesses when instructions are
deleted.
It also adds relevant unit testing infrastructure for MemorySSA's API.
(There is an actual user of this API, i will make that diff dependent on this one. In practice, a ton of opt passes remove memory instructions, so it's hopefully an obviously useful API :P)
Reviewers: hfinkel, reames, george.burgess.iv
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17157
llvm-svn: 262362
Summary:
Export the CloneDebugInfoMetadata utility, which clones all debug info
associated with a function into the first module. Also use this function
in CloneModule on each function we clone (the CloneFunction entrypoint
already does this).
Without this, cloning a module will lead to DI quality regressions,
especially since r252219 reversed the Function <-> DISubprogram edge
(before we could get lucky and have this edge preserved if the
DISubprogram itself was, e.g. due to location metadata).
This was verified to fix missing debug information in julia and
a unittest to verify the new behavior is included.
Patch by Yichao Yu! Thanks!
Reviewers: loladiro, pcc
Differential Revision: http://reviews.llvm.org/D17165
llvm-svn: 260791
This pass implements whole program optimization of virtual calls in cases
where we know (via bitset information) that the list of callees is fixed. This
includes the following:
- Single implementation devirtualization: if a virtual call has a single
possible callee, replace all calls with a direct call to that callee.
- Virtual constant propagation: if the virtual function's return type is an
integer <=64 bits and all possible callees are readnone, for each class and
each list of constant arguments: evaluate the function, store the return
value alongside the virtual table, and rewrite each virtual call as a load
from the virtual table.
- Uniform return value optimization: if the conditions for virtual constant
propagation hold and each function returns the same constant value, replace
each virtual call with that constant.
- Unique return value optimization for i1 return values: if the conditions
for virtual constant propagation hold and a single vtable's function
returns 0, or a single vtable's function returns 1, replace each virtual
call with a comparison of the vptr against that vtable's address.
Differential Revision: http://reviews.llvm.org/D16795
llvm-svn: 260312
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
This makes RemoveDuplicatePHINodes more effective and fixes an assertion
failure. Triggering the assertions requires a DenseSet reallocation
so this change only contains a constructive test.
I'll explain the issue with a small example. In the following function
there's a duplicate PHI, %4 and %5 are identical. When this is found
the DenseSet in RemoveDuplicatePHINodes contains %2, %3 and %4.
define void @F() {
br label %1
; <label>:1 ; preds = %1, %0
%2 = phi i32 [ 42, %0 ], [ %4, %1 ]
%3 = phi i32 [ 42, %0 ], [ %5, %1 ]
%4 = phi i32 [ 42, %0 ], [ 23, %1 ]
%5 = phi i32 [ 42, %0 ], [ 23, %1 ]
br label %1
}
after RemoveDuplicatePHINodes runs the function looks like this. %3 has
changed and is now identical to %2, but RemoveDuplicatePHINodes never
saw this.
define void @F() {
br label %1
; <label>:1 ; preds = %1, %0
%2 = phi i32 [ 42, %0 ], [ %4, %1 ]
%3 = phi i32 [ 42, %0 ], [ %4, %1 ]
%4 = phi i32 [ 42, %0 ], [ 23, %1 ]
br label %1
}
If the DenseSet does a reallocation now it will reinsert all
keys and stumble over %3 now having a different hash value than it had
when inserted into the map for the first time. This change clears the
set whenever a PHI is deleted and starts the progress from the
beginning, allowing %3 to be deleted and avoiding inconsistent DenseSet
state. This potentially has a negative performance impact because
it rescans all PHIs, but I don't think that this ever makes a difference
in practice.
llvm-svn: 246694
Instead of cloning distinct `MDNode`s when linking in a module, just
move them over. The module linker destroys the source module, so the
old node would otherwise just be leaked on the context. Create the new
node in place. This also reduces the number of cloned uniqued nodes
(since it's less likely their operands have changed).
This mapping strategy is only correct when we're discarding the source,
so the linker turns it on via a ValueMapper flag, `RF_MoveDistinctMDs`.
There's nothing observable in terms of `llvm-link` output here: the
linked module should be semantically identical.
I'll be adding more 'distinct' nodes to the debug info metadata graph in
order to break uniquing cycles, so the benefits of this will partly come
in future commits. However, we should get some gains immediately, since
we have a fair number of 'distinct' `DILocation`s being linked in.
llvm-svn: 243883
Replace the general `createLocalVariable()` with two more specific
functions: `createParameterVariable()` and `createAutoVariable()`, and
rewrite the documentation.
Besides cleaning up the API, this avoids exposing the fake DWARF tags
`DW_TAG_arg_variable` and `DW_TAG_auto_variable` to frontends, and is
preparation for removing them completely.
llvm-svn: 243764
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`. The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.
Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one. It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs. YMMV of
course.
Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py. I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three. It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).
Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.
llvm-svn: 236120
Remove the `DIArray` and `DITypeArray` typedefs, preferring the
underlying types (`DebugNodeArray` and `MDTypeRefArray`, respectively).
llvm-svn: 235413
This is the last major parent class, so I'll probably start deleting
classes in batches now. Looks like many of the references to the DI*
hierarchy were updated organically along the way.
llvm-svn: 235331
As a step toward killing `DIDescriptor` and its subclasses, remove it
from the `DIBuilder` API. Replace the subclasses with appropriate
pointers from the new debug info hierarchy. There are a couple of
possible surprises in type choices for out-of-tree frontends:
- Subroutine types: `MDSubroutineType`, not `MDCompositeTypeBase`.
- Composite types: `MDCompositeType`, not `MDCompositeTypeBase`.
- Scopes: `MDScope`, not `MDNode`.
- Generic debug info nodes: `DebugNode`, not `MDNode`.
This is part of PR23080.
llvm-svn: 235111
Change `DIBuilder::insertDeclare()` and `insertDbgValueIntrinsic()` to
take an `MDLocation*`/`DebugLoc` parameter which it attaches to the
created intrinsic. Assert at creation time that the `scope:` field's
subprogram matches the variable's. There's a matching `clang` commit to
use the API.
The context for this is PR22778, which is removing the `inlinedAt:`
field from `MDLocalVariable`, instead deferring to the `!dbg` location
attached to the debug info intrinsic. The best way to ensure we always
have a `!dbg` attachment is to require one at creation time. I'll be
adding verifier checks next, but this API change is the best way to
shake out frontend bugs.
Note: I added an `llvm_unreachable()` in `bindings/go` and passed in
`nullptr` for the `DebugLoc`. The `llgo` folks will eventually need to
pass a valid `DebugLoc` here.
llvm-svn: 235041
Gut the `DIDescriptor` wrappers around `MDLocalScope` subclasses. Note
that `DILexicalBlock` wraps `MDLexicalBlockBase`, not `MDLexicalBlock`.
llvm-svn: 234850
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
Replace all uses of `DITypedArray<>` with `MDTupleTypedArrayWrapper<>`
and `MDTypeRefArray`. The APIs are completely different, but the
provided functionality is the same: treat an `MDTuple` as if it's an
array of a particular element type.
To simplify this patch a bit, I've temporarily typedef'ed
`DebugNodeArray` to `DIArray` and `MDTypeRefArray` to `DITypeArray`.
I've also temporarily conditionalized the accessors to check for null --
eventually these should be changed to asserts and the callers should
check for null themselves.
There's a tiny accompanying patch to clang.
llvm-svn: 234290
`DIDescriptor`'s subclasses allow construction from incompatible
pointers, and `DIDescriptor` defines a series of `isa<>`-like functions
(e.g., `isCompileUnit()` instead of `isa<MDCompileUnit>()`) that clients
tend to use like this:
if (DICompileUnit(N).isCompileUnit())
foo(DICompileUnit(N));
These construction patterns work together to make `DIDescriptor` behave
differently from normal pointers.
Instead, use built-in `isa<>`, `dyn_cast<>`, etc., and only build
`DIDescriptor`s from pointers that are valid for their type.
I've split this into a few commits for different parts of LLVM and clang
(to decrease the patch size and increase the chance of review).
Generally the changes I made were NFC, but in a few places I made things
stricter if it made sense from the surrounded code.
Eventually a follow-up commit will remove the API for the "old" way.
llvm-svn: 234255
Since I'm slowly gutting `DISubprogram` and `DICompileUnit`, update the
`CloneFunc` unit tests to call `verifyModule()` (where the checks are
moving to).
llvm-svn: 233602
Allow unresolved nodes through the `MapMetadata()` if
`RF_NoModuleLevelChanges`, since there's no remapping to do anyway.
This fixes PR22929. I'll add a clang test as a follow-up.
llvm-svn: 232449
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
This change aligns globals to the next highest power of 2 bytes, up to a
maximum of 128. This makes it more likely that we will be able to compress
bit sets with a greater alignment. In many more cases, we can now take
advantage of a new optimization also introduced in this patch that removes
bit set checks if the bit set is all ones.
The 128 byte maximum was found to provide the best tradeoff between instruction
overhead and data overhead in a recent build of Chromium. It allows us to
remove ~2.4MB of instructions at the cost of ~250KB of data.
Differential Revision: http://reviews.llvm.org/D7873
llvm-svn: 230540
The builder is based on a layout algorithm that tries to keep members of
small bit sets together. The new layout compresses Chromium's bit sets to
around 15% of their original size.
Differential Revision: http://reviews.llvm.org/D7796
llvm-svn: 230394
This patch introduces a new mechanism that allows IR modules to co-operatively
build pointer sets corresponding to addresses within a given set of
globals. One particular use case for this is to allow a C++ program to
efficiently verify (at each call site) that a vtable pointer is in the set
of valid vtable pointers for the class or its derived classes. One way of
doing this is for a toolchain component to build, for each class, a bit set
that maps to the memory region allocated for the vtables, such that each 1
bit in the bit set maps to a valid vtable for that class, and lay out the
vtables next to each other, to minimize the total size of the bit sets.
The patch introduces a metadata format for representing pointer sets, an
'@llvm.bitset.test' intrinsic and an LTO lowering pass that lays out the globals
and builds the bitsets, and documents the new feature.
Differential Revision: http://reviews.llvm.org/D7288
llvm-svn: 230054
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
llvm-svn: 225974
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
DITypeArray is an array of DITypeRef, at its creation, we will create
DITypeRef (i.e use the identifier if the type node has an identifier).
This is the last patch to unique the type array of a subroutine type.
rdar://17628609
llvm-svn: 214132
Turn llvm::SpecialCaseList into a simple class that parses text files in
a specified format and knows nothing about LLVM IR. Move this class into
LLVMSupport library. Implement two users of this class:
* DFSanABIList in DFSan instrumentation pass.
* SanitizerBlacklist in Clang CodeGen library.
The latter will be modified to use actual source-level information from frontend
(source file names) instead of unstable LLVM IR things (LLVM Module identifier).
Remove dependency edge from ClangCodeGen/ClangDriver to LLVMTransformUtils.
No functionality change.
llvm-svn: 212643
While std::error_code itself seems to work OK in all platforms, there
are few annoying differences with regards to the std::errc enumeration.
This patch adds a simple llvm enumeration, which will hopefully avoid build
breakages in other platforms and surprises as we get more uses of
std::error_code.
llvm-svn: 210920
The idea of this patch is to turn llvm/Support/system_error.h into a
transitional header that just brings in the erorr_code api to the llvm
namespace. I will remove it shortly afterwards.
The cases where the general idea needed some tweaking:
* std::errc is a namespace in msvc, so we cannot use "using std::errc". I could
add an #ifdef, but there were not that many uses, so I just added std:: to
them in this patch.
* Template specialization had to be moved to the std namespace in this
patch set already.
* The msvc implementation of default_error_condition doesn't seem to
provide the same transformations as we need. Not too surprising since
the standard doesn't actually say what "equivalent" means. I fixed the
problem by keeping our old mapping and using it at error_code
construction time.
Despite these shortcomings I think this is still a good thing. Some reasons:
* The different implementations of system_error might improve over time.
* It removes 925 lines of code from llvm already.
* It removes 6313 bytes from the text segment of the clang binary when
it is built with gcc and 2816 bytes when building with clang and
libstdc++.
llvm-svn: 210687
This patch changes the design of GlobalAlias so that it doesn't take a
ConstantExpr anymore. It now points directly to a GlobalObject, but its type is
independent of the aliasee type.
To avoid changing all alias related tests in this patches, I kept the common
syntax
@foo = alias i32* @bar
to mean the same as now. The cases that used to use cast now use the more
general syntax
@foo = alias i16, i32* @bar.
Note that GlobalAlias now behaves a bit more like GlobalVariable. We
know that its type is always a pointer, so we omit the '*'.
For the bitcode, a nice surprise is that we were writing both identical types
already, so the format change is minimal. Auto upgrade is handled by looking
through the casts and no new fields are needed for now. New bitcode will
simply have different types for Alias and Aliasee.
One last interesting point in the patch is that replaceAllUsesWith becomes
smart enough to avoid putting a ConstantExpr in the aliasee. This seems better
than checking and updating every caller.
A followup patch will delete getAliasedGlobal now that it is redundant. Another
patch will add support for an explicit offset.
llvm-svn: 209007
Summary:
Tested with a unit test because we don't appear to have any transforms
that use this other than ASan, I think.
Fixes PR17935.
Reviewers: nicholas
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3194
llvm-svn: 204866
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
Before this patch they would take an boolean argument to say if the path
already existed. This was redundant with the returned error_code which is able
to represent that. This allowed for callers to incorrectly check only the
existed flag instead of first checking the error code.
Instead, pass in a boolean flag to say if the previous (non-)existence should be
an error or not.
Callers of the of the old simple versions are not affected. They still ignore
the previous (non-)existence as they did before.
llvm-svn: 201979
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
Summary:
Rewrite asan's stack frame layout.
First, most of the stack layout logic is moved into a separte file
to make it more testable and (potentially) useful for other projects.
Second, make the frames more compact by using adaptive redzones
(smaller for small objects, larger for large objects).
Third, try to minimized gaps due to large alignments (this is hypothetical since
today we don't see many stack vars aligned by more than 32).
The frames indeed become more compact, but I'll still need to run more benchmarks
before committing, but I am sking for review now to get early feedback.
This change will be accompanied by a trivial change in compiler-rt tests
to match the new frame sizes.
Reviewers: samsonov, dvyukov
Reviewed By: samsonov
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2324
llvm-svn: 196568