Commit Graph

14 Commits

Author SHA1 Message Date
QingShan Zhang f24ec7bdd0 [Power9] Enable the Out-of-Order scheduling model for P9 hw
When switched to the MI scheduler for P9, the hardware is modeled as out of order.
However, inside the MI Scheduler algorithm, we still use the in-order scheduling model
as the MicroOpBufferSize isn't set. The MI scheduler take it as the hw cannot buffer
the op. So, only when all the available instructions issued, the pending instruction
could be scheduled. That is not true for our P9 hw in fact.

This patch is trying to enable the Out-of-Order scheduling model. The buffer size 44 is
picked from the P9 hw spec, and the perf test indicate that, its value won't hurt the cpu2017.

With this patch, there are 3 specs improved over 3% and 1 spec deg over 3%. The detail is as follows:

x264_r: +6.95%
cactuBSSN_r: +6.94%
lbm_r: +4.11%
xz_r: -3.85%

And the GEOMEAN for all the C/C++ spec in spec2017 is about 0.18% improved. 

Reviewer: Nemanjai
Differential Revision: https://reviews.llvm.org/D55810

llvm-svn: 350285
2019-01-03 05:04:18 +00:00
Zaara Syeda b2595b988b [PowerPC] Improve codegen for vector loads using scalar_to_vector
This patch aims to improve the codegen for vector loads involving the
scalar_to_vector (load X) sequence. Initially, ld->mv instructions were used
for scalar_to_vector (load X), so this patch allows scalar_to_vector (load X)
to utilize:

LXSD and LXSDX for i64 and f64
LXSIWAX for i32 (sign extension to i64)
LXSIWZX for i32 and f64

Committing on behalf of Amy Kwan.
Differential Revision: https://reviews.llvm.org/D48950

llvm-svn: 339260
2018-08-08 15:20:43 +00:00
Lei Huang f4ec67822f [PowerPC] Remove the match pattern in the definition of LXSDX/STXSDX
The match pattern in the definition of LXSDX is xoaddr, so the Pseudo
instruction XFLOADf64 never gets selected. XFLOADf64 expands to LXSDX/LFDX post
RA based on the register pressure. To avoid ambiguity, we need to remove the
select pattern for LXSDX, same as what was done for LXSD. STXSDX also have
the same issue.

Patch by Qing Shan Zhang (steven.zhang).

Differential Revision: https://reviews.llvm.org/D47178

llvm-svn: 333150
2018-05-24 03:20:28 +00:00
Tony Jiang 438bf4a66b [PPC] Heuristic to choose between a X-Form VSX ld/st vs a X-Form FP ld/st.
The VSX versions have the advantage of a full 64-register target whereas the FP
ones have the advantage of lower latency and higher throughput. So what we’re
after is using the faster instructions in low register pressure situations and
using the larger register file in high register pressure situations.

The heuristic chooses between the following 7 pairs of instructions.
PPC::LXSSPX vs PPC::LFSX
PPC::LXSDX vs PPC::LFDX
PPC::STXSSPX vs PPC::STFSX
PPC::STXSDX vs PPC::STFDX
PPC::LXSIWAX vs PPC::LFIWAX
PPC::LXSIWZX vs PPC::LFIWZX
PPC::STXSIWX vs PPC::STFIWX

Differential Revision: https://reviews.llvm.org/D38486

llvm-svn: 318651
2017-11-20 14:38:30 +00:00
Zaara Syeda 932978315b P9: D-form vector load/store. Differential Revision: https://reviews.llvm.org/D33248
llvm-svn: 303780
2017-05-24 17:50:37 +00:00
Nemanja Ivanovic 6354d23555 [Power9] Exploit D-Form VSX Scalar memory ops that target full VSX register set
This patch corresponds to review:

The newly added VSX D-Form (register + offset) memory ops target the upper half
of the VSX register set. The existing ones target the lower half. In order to
unify these and have the ability to target all the VSX registers using D-Form
operations, this patch defines Pseudo-ops for the loads/stores which are
expanded post-RA. The expansion then choses the correct opcode based on the
register that was allocated for the operation.

llvm-svn: 283212
2016-10-04 11:25:52 +00:00
Nemanja Ivanovic 6e7879c5e6 [Power9] Add exploitation of non-permuting memory ops
This patch corresponds to review:
https://reviews.llvm.org/D19825

The new lxvx/stxvx instructions do not require the swaps to line the elements
up correctly. In order to select them over the lxvd2x/lxvw4x instructions which
require swaps, the patterns for the old instruction have a predicate that
ensures they won't be selected on Power9 and newer CPUs.

llvm-svn: 282143
2016-09-22 09:52:19 +00:00
Ehsan Amiri a538b0f023 Adding -verify-machineinstrs option to PowerPC tests
Currently we have a number of tests that fail with -verify-machineinstrs.
To detect this cases earlier we add the option to the testcases with the
exception of tests that will currently fail with this option. PR 27456 keeps
track of this failures.

No code review, as discussed with Hal Finkel.

llvm-svn: 277624
2016-08-03 18:17:35 +00:00
Bill Schmidt 34af5e1c76 [PowerPC] Add an MI SSA peephole pass.
This patch adds a pass for doing PowerPC peephole optimizations at the
MI level while the code is still in SSA form.  This allows for easy
modifications to the instructions while depending on a subsequent pass
of DCE.  Both passes are very fast due to the characteristics of SSA.

At this time, the only peepholes added are for cleaning up various
redundancies involving the XXPERMDI instruction.  However, I would
expect this will be a useful place to add more peepholes for
inefficiencies generated during instruction selection.  The pass is
placed after VSX swap optimization, as it is best to let that pass
remove unnecessary swaps before performing any remaining clean-ups.

The utility of these clean-ups are demonstrated by changes to four
existing test cases, all of which now have tighter expected code
generation.  I've also added Eric Schweiz's bugpoint-reduced test from
PR25157, for which we now generate tight code.  One other test started
failing for me, and I've fixed it
(test/Transforms/PlaceSafepoints/finite-loops.ll) as well; this is not
related to my changes, and I'm not sure why it works before and not
after.  The problem is that the CHECK-NOT: of "statepoint" from test1
fails because of the "statepoint" in test2, and so forth.  Adding a
CHECK-LABEL in between keeps the different occurrences of that string
properly scoped.

llvm-svn: 252651
2015-11-10 21:38:26 +00:00
Bill Schmidt 54cced54a6 [PowerPC] v4i32 is a VSRCRegClass
I was looking at some vector code generation and kept seeing
unnecessary vector copies into the Altivec half of the VSX registers.
I discovered that we overlooked v4i32 when adding the register classes
for VSX; we only added v4f32 and v2f64.  This means that anything that
canonicalizes into v4i32 (which is a LOT of stuff) ends up being
forced into VRRC on its way to VSRC.

The fix is one line.  The rest of the patch is fixing up some test
cases whose code generation has changed as a result.

This seems like it would be a good candidate for backport to 3.7.

llvm-svn: 242442
2015-07-16 21:14:07 +00:00
Hal Finkel 7c5cb066d0 [PowerPC] Enable printing instructions using aliases
TableGen had been nicely generating code to print a number of instructions using
shorter aliases (and PowerPC has plenty of short mnemonics), but we were not
calling it. For some of the aliases we support in the parser, TableGen can't
infer the "inverse" alias relationship, so there is still more to do.

Thus, after some hours of updating test cases...

llvm-svn: 235616
2015-04-23 18:30:38 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
Bill Schmidt efe9ce216e [PowerPC 4/4] Enable little-endian support for VSX.
With the foregoing three patches, VSX instructions can be used for
little endian.  This patch removes the restriction that prevented
this, and re-enables the test cases from the first three patches.

llvm-svn: 223792
2014-12-09 16:59:57 +00:00
Bill Schmidt 4187962697 Add test cases that were inadvertently omitted from r223783 and r223788
llvm-svn: 223789
2014-12-09 16:44:58 +00:00