This is a patch that allows isGuaranteedNotToBeUndefOrPoison to return more precise result
when an argument is given, by looking through its uses at the entry block (and following blocks as well, if it is checking poison only).
This is useful when there is a function call with noundef arguments at the entry block.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D88207
Introduce a helper which can be used to update the debug location of an
Instruction after the instruction is hoisted. This can be used to safely
drop a source location as recommended by the docs.
For more context, see the discussion in https://reviews.llvm.org/D60913.
Differential Revision: https://reviews.llvm.org/D85670
I have long complained that while we have exhaustive tests
for ConstantRange, they are, uh, not good.
The approach of groking our own constant range
via exhaustive enumeration is, mysterious.
It neither tells us without doubt that the result is
conservatively correct, nor the precise match to the ConstantRange
result tells us that the result is precise.
But yeah, it's fast, i give it that.
In short, there are three things that we need to check:
1. That ConstantRange result is conservatively correct
2. That ConstantRange range is reasonable
3. That ConstantRange result is reasonably precise
So let's not just check the middle one, but all three.
This provides precision test coverage for D88178.
We shift the significand right on a truncation, but that needs to be made NaN-safe:
always set at least 1 bit in the significand.
https://llvm.org/PR43907
See D88238 for the likely follow-up (but needs some plumbing fixes before it can proceed).
Differential Revision: https://reviews.llvm.org/D87835
Before this patch, the CrashRecoveryContext was returning -2 upon a signal, like ExecuteAndWait does. This didn't match the behavior on Windows, where the the exception code was returned.
We now return the signal's code, which optionally allows for re-throwing the signal later. Doing so requires all custom handlers to be removed first, through llvm::sys::unregisterHandlers() which we made a public API.
This is part of https://reviews.llvm.org/D70378
Before this patch, the CrashRecoveryContext would only catch the first abort(). Any further calls to abort() inside subsquent CrashRecoveryContexts would not be catched. This is because the Windows CRT removes the abort() handler before calling it.
This is part of https://reviews.llvm.org/D70378
For some expressions, we can use information from loop guards when
we are looking for a maximum. This patch applies information from
loop guards to the expression used to compute the maximum backedge
taken count in howFarToZero. It currently replaces an unknown
expression X with UMin(X, Y), if the loop is guarded by
X ult Y.
This patch is minimal in what conditions it applies, and there
are a few TODOs to generalize.
This partly addresses PR40961. We will also need an update to
LV to address it completely.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D67178
My toolchain stopped working (LLVM 8.0, libstdc++ 5.4.0) after 577adda:
06:25:37 ../unittests/Support/Path.cpp:91:7: error: chosen constructor is explicit in copy-initialization
06:25:37 {"", false, false}, {"/", true, true}, {"/foo", true, true},
06:25:37 ^~~~~~~~~~~~~~~~~~
06:25:37 /proj/flexasic/app/llvm/8.0/bin/../lib/gcc/x86_64-unknown-linux-gnu/5.4.0/../../../../include/c++/5.4.0/tuple:479:19: note: explicit constructor declared here
06:25:37 constexpr tuple(_UElements&&... __elements)
06:25:37 ^
This commit adds explicit calls to std::make_tuple to work around
the problem.
This takes the mapped instructions from the IRInstructionMapper, and
passes it to the Suffix Tree to find the repeated substrings. Within
each set of repeated substrings, the IRSimilarityCandidates are compared
against one another for structure, and ensuring that the operands in the
instructions are used in the same way. Each of these structurally
similarity IRSimilarityCandidates are contained in a SimilarityGroup.
Tests checking for identifying identity of structure, different
isomorphic structure, and different
nonisomoprhic structure are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Differential Revision: https://reviews.llvm.org/D86972
Just because sequences of instructions are similar to one another,
doesn't mean they are doing the same thing.
This introduces a structural check for the IRSimilarityCandidate that
compares two IRSimilarityCandidates against one another, and in each
instruction creates a mapping between the operands and results, or
checks that the existing mapping is valid. If this check passes, it
means we have structurally similar IRSimilarityCandidates.
Tests for whether the candidates are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Recommit of: b27db2bb68 for Differential
URL.
Differential Revision: https://reviews.llvm.org/D86971
Just because sequences of instructions are similar to one another,
doesn't mean they are doing the same thing.
This introduces a structural check for the IRSimilarityCandidate that
compares two IRSimilarityCandidates against one another, and in each
instruction creates a mapping between the operands and results, or
checks that the existing mapping is valid. If this check passes, it
means we have structurally similar IRSimilarityCandidates.
Tests for whether the candidates are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Translating between JSON objects and C++ strutctures is common.
From experience in clangd, fromJSON/ObjectMapper work well and save a lot of
code, but aren't adopted elsewhere at least partly due to total lack of error
reporting beyond "ok"/"bad".
The recently-added error model should be rich enough for most applications.
It requires tracking the path within the root object and reporting local
errors at appropriate places.
To do this, we exploit the fact that the call graph of recursive
parse functions mirror the structure of the JSON itself.
The current path is represented as a linked list of segments, each of which is
on the stack as a parameter. Concretely, fromJSON now looks like:
bool fromJSON(const Value&, T&, Path);
Beyond the signature change, this is reasonably unobtrusive: building
the path segments is mostly handled by ObjectMapper and the vector<T> fromJSON.
However the root caller of fromJSON must now create a Root object to
store the errors, which is a little clunky.
I've added high-level parse<T>(StringRef) -> Expected<T>, but it's not
general enough to be the primary interface I think (at least, not usable in
clangd).
All existing users (mostly just clangd) are updated in this patch,
making this change backwards-compatible is a bit hairy.
Differential Revision: https://reviews.llvm.org/D88103
When an error occurs processing a JSON object, seeing the actual
surrounding data helps. Dumping just the node where the problem
was identified can be too much or too little information.
printErrorContext() shows the error message in its context, as a comment.
JSON values along the path to the broken place are shown in some detail,
the rest of the document is elided. For example:
```
{
"credentials": [
{
"username": /* error: expected string */ 42,
"password": "secret"
},
{ ... }
]
"backups": { ... }
}
```
Differential Revision: https://reviews.llvm.org/D88103
This is in preparation for supporting -debugify-each, which adds a debug
info pass before and after each pass.
Switch VerifyEach to use this.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D88107
This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.
However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.
This also fixes an issue I was seeing with newly created functions not
having passes run on them.
Ran check-llvm with expensive checks.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87798
This error model should be rich enough for most applications. It comprises:
- a name for the root object, so the user knows what we're parsing
- a path from the root object to the JSON node most associated with the error
- a local error message
This can be presented as an llvm::Error e.g.
"expected string at ConfigFile.credentials[0].username"
It's designed to be cheap: Paths are a linked list of lightweight
objects on the stack. No heap allocations unless errors are encountered.
A subsequent commit will make use of this in the JSON-to-object
translation facilities: fromJSON and ObjectMapper.
However it's independent of these and can be used for e.g. validation alone.
Another subsequent commit will support showing the error in its context
within the parsed value.
Differential Revision: https://reviews.llvm.org/D88103
This isn't standard JSON, but is a popular extension.
It will be used to show errors in context, rendering pseudo-json for humans.
Differential Revision: https://reviews.llvm.org/D88103
The IRSimilarityCandidate is a container to hold a region of
IRInstructions and offer interfaces for the starting instruction, ending
instruction, parent function, length. It also assigns a global value
number for each unique instance of a value in the region.
It also contains an interface to compare two IRSimilarity as to whether
they have the same sequence of similar instructions.
Tests for whether the instructions are similar are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Recommit of: 4944bb190f
Differential Revision: https://reviews.llvm.org/D86970
Implements IS_ABSOLUTE_PATH from GNU tools.
C++17 is_absolute behavior is different the from the behavior defined by GNU
tools.
According to cppreference.com, C++17 states: "An absolute path is a path
that unambiguously identifies the location of a file without reference
to an additional starting location."
In other words, the rules are:
1. POSIX style paths with nonempty root directory are absolute.
2. Windows style paths with nonempty root name and root directory are
absolute.
3. No other paths are absolute.
GNU rules are:
1. Paths starting with a path separator are absolute.
2. Windows style paths are also absolute if they start with a character
followed by ':'.
3. No other paths are absolute.
On Windows style the path "C:\Users\Default" has "C:" as root name and "\"
as root directory.
Hence "C:" on Windows is absolute under GNU rules and not absolute under
C++17 because it has no root directory. Likewise "/" and "\" on Windows are
absolute under GNU and are not absolute under C++17 due to empty root name.
Related to PR46368.
Differential Revision: https://reviews.llvm.org/D87667
The IRSimilarityCandidate is a container to hold a region of
IRInstructions and offer interfaces for the starting instruction, ending
instruction, parent function, length. It also assigns a global value
number for each unique instance of a value in the region.
It also contains an interface to compare two IRSimilarity as to whether
they have the same sequence of similar instructions.
Tests for whether the instructions are similar are found in
unittests/Analysis/IRSimilarityIdentifierTest.cpp.
Differential Revision: https://reviews.llvm.org/D86970
Similar to the ConstantRange::getActiveBits(), and to similarly-named
methods in APInt, returns the bitwidth needed to represent
the given signed constant range
Much like APInt::getActiveBits(), computes how many bits are needed
to be able to represent every value in this constant range,
treating the values as unsigned.
Use the fact that `~X` is equivalent to `-1 - X`, which gives us
fully-precise answer, and we only need to special-handle the wrapped case.
This fires ~16k times for vanilla llvm test-suite + RawSpeed.
Currently SCEVExpander creates inttoptr for non-integral pointers if the
base is a null constant for example. This results in invalid IR.
This patch changes InsertNoopCastOfTo to emit a GEP & bitcast to convert
to a non-integral pointer. First, a GEP of i8* null is generated and the
integral value is used as index. The GEP is then bitcasted to the target
type.
This was exposed by D71539.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87827
Currently newer clang-format options cannot be included in .clang-format files, if not all users can be forced to use an updated version.
This patch tries to solve this by adding an option to clang-format, enabling to ignore unknown (newer) options.
Differential Revision: https://reviews.llvm.org/D86137
The IRInstructionData structs are a different representation of the
program. This list treats the program as if it was "flattened" and
the only parent is this list. This lets us easily create ranges of
instructions.
Differential Revision: https://reviews.llvm.org/D86969
This patch extends SCEVParameterRewriter to support rewriting unknown
epxressions to arbitrary SCEV expressions. It will be used by further
patches.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D67176
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Recommit of: b04c1a9d31
Differential Revision: https://reviews.llvm.org/D86968
An AsmPrinter should always be provided to the method because some forms
depend on its parameters. The only place in the codebase which passed
a nullptr value was found in the unit tests, so the patch updates it to
use some dummy AsmPrinter instead.
Differential Revision: https://reviews.llvm.org/D85293
This introduces the IRInstructionMapper, and the associated wrapper for
instructions, IRInstructionData, that maps IR level Instructions to
unsigned integers.
Mapping is done mainly by using the "isSameOperationAs" comparison
between two instructions. If they return true, the opcode, result type,
and operand types of the instruction are used to hash the instruction
with an unsigned integer. The mapper accepts instruction ranges, and
adds each resulting integer to a list, and each wrapped instruction to
a separate list.
At present, branches, phi nodes are not mapping and exception handling
is illegal. Debug instructions are not considered.
The different mapping schemes are tested in
unittests/Analysis/IRSimilarityIdentifierTest.cpp
Differential Revision: https://reviews.llvm.org/D86968
Most clients only need CVType and CVSymbol, not structs for every type
and symbol. Move CVSymbol and CVType to CVRecord.h to accomplish this.
Update some of the common headers that need CVSymbol and CVType to use
the new location.
Modify the unit test to inspect all MVE instructions and mark the
load/store/move of vpr/p0 as valid, as well as the remaining scalar
shifts.
Differential Revision: https://reviews.llvm.org/D87753
GlobPattern::isTrivialMatchAll() returns true for the GlobPattern "*"
which will match all inputs.
This can be used to avoid performing expensive preparation of the input
for match() when the result of the match will always be true.
Differential Revision: https://reviews.llvm.org/D87468
When adding a new function via addNewFunctionIntoRefSCC(), it creates a
new node and immediately populates the edges. Since populateSlow() calls
G->get() on all referenced functions, it will create a node (but not
populate it) for functions that haven't yet been added. If we add two
mutually recursive functions, the assert that the node should never have
been created will fire when the second function is added. So here we
remove that assert since the node may have already been created (but not
yet populated).
createNode() is only called from addNewFunctionInto{,Ref}SCC().
https://bugs.llvm.org/show_bug.cgi?id=47502
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D87623
~~D65060 uncovered that trying to use BFI in loop passes can lead to non-deterministic behavior when blocks are re-used while retaining old BFI data.~~
~~To make sure BFI is preserved through loop passes a Value Handle (VH) callback is registered on blocks themselves. When a block is freed it now also wipes out the accompanying BFI entry such that stale BFI data can no longer persist resolving the determinism issue. ~~
~~An optimistic approach would be to incrementally update BFI information throughout the loop passes rather than only invalidating them on removed blocks. The issues with that are:~~
~~1. It is not clear how BFI information should be incrementally updated: If a block is duplicated does its BFI information come with? How about if it's split/modified/moved around? ~~
~~2. Assuming we can address these problems the implementation here will be a massive undertaking. ~~
~~There's a known need of BFI in LICM analysis which requires correct but not incrementally updated BFI data. A follow-up change can register BFI in all loop passes so this preserved but potentially lossy data is available to any loop pass that wants it.~~
See: D75341 for an identical implementation of preserving BFI via VH callbacks. The previous statements do still apply but this change no longer has to be in this diff because it's already upstream 😄 .
This diff also moves BFI to be a part of LoopStandardAnalysisResults since the previous method using getCachedResults now (correctly!) statically asserts (D72893) that this data isn't static through the loop passes.
Testing
Ninja check
Reviewed By: asbirlea, nikic
Differential Revision: https://reviews.llvm.org/D86156
This patch adds a isConditionImplied function that
takes a constraint and returns true if the constraint
is implied by the current constraints in the system.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D84545
This patch recommits "[ConstraintSystem] Add helpers to deal with linear constraints."
(it reverts the revert commit 8da6ae4ce1).
The reason for the revert was using __builtin_multiply_overflow, which
is not available for all compilers. The patch has been updated to use
MulOverflow from MathExtras.h
In the case of LTO, several DWARF units can be emitted in one section.
For an extremely large application, they may exceed the limit of 4GiB
for 32-bit offsets. As it is now possible to emit 64-bit debugging info,
the patch enables storing the larger offsets.
Differential Revision: https://reviews.llvm.org/D87026
This is mostly an NFC patch because the involved methods are used when
emitting DWO files, which is incompatible with DWARFv3, or for platforms
where DWARF64 is not supported yet.
Differential Revision: https://reviews.llvm.org/D87015
The patch also adds a method to choose an appropriate DWARF form
to represent section offsets according to the version and the format
of producing debug info.
Differential Revision: https://reviews.llvm.org/D87014
DW_FORM_sec_offset and DW_FORM_strp imply values of different sizes with
DWARF32 and DWARF64. The patch fixes DIE value classes to use correct
sizes when emitting their values. For DIELocList it ensures that the
requested DWARF form matches the current DWARF format because that class
uses a method that selects the size automatically.
Differential Revision: https://reviews.llvm.org/D87009
These methods are used to emit values which are 32-bit in DWARF32 and
64-bit in DWARF64. The patch fixes them so that they choose the length
automatically, depending on the DWARF format set in the Context.
Differential Revision: https://reviews.llvm.org/D87008
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
This patch introduces a new ConstraintSystem class, that maintains a set
of linear constraints and uses Fourier–Motzkin elimination to eliminate
constraints to check if there are solutions for the system.
It also adds a convert-constraint-log-to-z3.py script, which can parse
the debug output of the constraint system and convert it to a python
script that feeds the constraints into Z3 and checks if it produces the
same result as the LLVM implementation. This is for verification
purposes.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D84544
Halide users reported this here: https://llvm.org/pr46176
I reported the issue to MSVC here:
https://developercommunity.visualstudio.com/content/problem/1179643/msvc-copies-overaligned-non-trivially-copyable-par.html
This codepath is apparently not covered by LLVM's unit tests, so I added
coverage in a unit test.
If we want to support this configuration going forward, it means that is
in general not safe to pass a SmallVector<T, N> by value if alignof(T)
is greater than 4. This doesn't appear to come up often because passing
a SmallVector by value is inefficient and not idiomatic: it copies the
inline storage. In this case, the SmallVector<LLT,4> is captured by
value by a lambda, and the lambda is passed by value into std::function,
and that's how we hit the bug.
Differential Revision: https://reviews.llvm.org/D87475
Making MaterializationResponsibility instances immovable allows their
associated VModuleKeys to be updated by the ExecutionSession while the
responsibility is still in-flight. This will be used in the upcoming
removable code feature to enable safe merging of resource keys even if
there are active compiles using the keys being merged.
This will allow non-copyable function objects (e.g. lambdas that capture
unique_ptrs) to be used with ThreadPool.
Differential Revision: https://reviews.llvm.org/D87467
This implements support for isKnownNonZero, computeKnownBits when freeze is involved.
```
br (x != 0), BB1, BB2
BB1:
y = freeze x
```
In the above program, we can say that y is non-zero. The reason is as follows:
(1) If x was poison, `br (x != 0)` raised UB
(2) If x was fully undef, the branch again raised UB
(3) If x was non-zero partially undef, say `undef | 1`, `freeze x` will return a nondeterministic value which is also non-zero.
(4) If x was just a concrete value, it is trivial
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D75808
This patch adds isGuaranteedNotToBePoison and programUndefinedIfUndefOrPoison.
isGuaranteedNotToBePoison will be used at D75808. The latter function is used at isGuaranteedNotToBePoison.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D84242
The TempDir.path() member function returns a StringRef. We've been
calling the data() method on that StringRef, which does not guarantee
to return a null-terminated string (required by chdir and other POSIX
functions).
Introduce the c_str() method in the TempDir class, which returns the
proper string without the need to create a copy of the path at use site.
This is the split part of D86269, which add a new ELF machine flag called EM_CSKY and related relocations.
Some target-specific flags and tests for csky can be added in follow-up patches later.
Differential Revision: https://reviews.llvm.org/D86610
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
Before upstream a new target called CSKY, make a new triple of that called Triple::csky.
For now, it's a 32-bit little endian target and the detail can be referred at D86269.
This is the split part of D86269, which add a new target called CSKY.
Differential Revision: https://reviews.llvm.org/D86505
Some LLVM unit tests forget to clean up temporary files and
directories. Introduce RAII classes for cleaning them up.
Refactor the tests to use those classes.
Differential Revision: https://reviews.llvm.org/D83228
This patch adds an initial, incomeplete and unsound implementation of
canReplacePointersIfEqual to check if a pointer value A can be replaced
by another pointer value B, that are deemed to be equivalent through
some means (e.g. information from conditions).
Note that is in general not sound to blindly replace pointers based on
equality, for example if they are based on different underlying objects.
LLVM's memory model is not completely settled as of now; see
https://bugs.llvm.org/show_bug.cgi?id=34548 for a more detailed
discussion.
The initial version of canReplacePointersIfEqual only rejects a very
specific case: replacing a pointer with a constant expression that is
not dereferenceable. Such a replacement is problematic and can be
restricted relatively easily without impacting most code. Using it to
limit replacements in GVN/SCCP/CVP only results in small differences in
7 programs out of MultiSource/SPEC2000/SPEC2006 on X86 with -O3 -flto.
This patch is supposed to be an initial step to improve the current
situation and the helper should be made stricter in the future. But this
will require careful analysis of the impact on performance.
Reviewed By: aqjune
Differential Revision: https://reviews.llvm.org/D85524
This relands e9a3d1a401 which was originally
missing linking LLVMSupport into LLMVFileCheck which broke the SHARED_LIBS build.
Original summary:
The actual FileCheck logic seems to be implemented in LLVMSupport. I don't see a
good reason for having FileCheck implemented there as it has a very specific use
while LLVMSupport is a dependency of pretty much every LLVM tool there is. In
fact, the only use of FileCheck I could find (outside the FileCheck tool and the
FileCheck unit test) is a single call in GISelMITest.h.
This moves the FileCheck logic to its own LLVMFileCheck library. This way only
FileCheck and the GlobalISelTests now have a dependency on this code.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D86344
The actual FileCheck logic seems to be implemented in LLVMSupport. I don't see a
good reason for having FileCheck implemented there as it has a very specific use
while LLVMSupport is a dependency of pretty much every LLVM tool there is. In
fact, the only use of FileCheck I could find (outside the FileCheck tool and the
FileCheck unit test) is a single call in GISelMITest.h.
This moves the FileCheck logic to its own LLVMFileCheck library. This way only
FileCheck and the GlobalISelTests now have a dependency on this code.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D86344
The Length, AbbrOffset and Values fields of the debug_info section are
optional. This patch helps remove them and simplify test cases.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D86857
Add printf-style precision specifier to pad numbers to a given number of
digits when matching them if the value is smaller than the given
precision. This works on both empty numeric expression (e.g. variable
definition from input) and when matching a numeric expression. The
syntax is as follows:
[[#%.<precision><format specifier>, ...]
where <format specifier> is optional and ... can be a variable
definition or not with an empty expression or not. In the absence of a
precision specifier, a variable definition will accept leading zeros.
Reviewed By: jhenderson, grimar
Differential Revision: https://reviews.llvm.org/D81667
DFS and Reverse-DFS linkage orders are used to order execution of
deinitializers and initializers respectively.
This patch replaces uses of special purpose DFS order functions in
MachOPlatform and LLJIT with uses of the new methods.
This patch helps make the debug_abbrev_offset field optional. We don't
need to calculate the value of this field in the future.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D86614
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
This adds all missing format values that are defined in
ELFObjectFile<ELFT>::getFileFormatName().
Differential revision: https://reviews.llvm.org/D86625