Debugging app launch/attach failures can be difficult because of
all of the messages logged to the console on a darwin system;
emitting specific messages around critical API calls can make it
easier to narrow the search for the console messages related to
the failure.
<rdar://problem/67220442>
Differential revision: https://reviews.llvm.org/D94357
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
This test seems to be broken there (which is not totally surprising as
this functionality was never used on windows). Disable the test while I
investigate.
- s/createUniqueFile/createUniquePath -- we don't want to create the file,
just the file name
- s/data()/str().c_str()/ -- paths given to system apis must be
null-terminated
- Remove unused plists that were referenced (but unused) by Xcode.
- Move all debugserver plists unders tools/debugserver/resources.
- Add the ability to distinguish between com.apple.security.cs.debugger
and com.apple.private.cs.debugger.
rdar://66082043
Differential revision: https://reviews.llvm.org/D94320
Remove the stale LLDB-Info.plist which was only used by TestHelp.py. The
latter would try to parse the version number from the plist and use that
to verify the version in the help output. Of course this never matched
so it would fall back to matching any arbitrary version.
This patch does *not* change the real LLDB-Info.plist.in file which is
used for the LLDB Framework.
Bump the required SWIG version to 3. If my memory serves me well we last
bumped the required SWIG version to 2 for Python 3. At that time SWIG 3
had already been around for a while so everyone I know was already using
that.
It appears that SWIG 3 is the only version that officially supports
C++11 which we're using in the typemap. SWIG 3 was released in 2014 so I
think it's reasonable to make that the minimum required version.
https://bugs.llvm.org/show_bug.cgi?id=48685
Differential revision: https://reviews.llvm.org/D94244
Replace uses of GetModuleAtIndexUnlocked and
GetModulePointerAtIndexUnlocked with the ModuleIterable and
ModuleIterableNoLocking where applicable.
Differential revision: https://reviews.llvm.org/D94271
Adds the RISC-V ArchSpec bits contributed by @simoncook as part of D62732,
plus logic to distinguish between riscv32 and riscv64 based on ELF class.
The patch follows the implementation approach previously used for MIPS.
It defines RISC-V architecture subtypes and inspects the ELF header,
namely the ELF class, to detect the right subtype.
Differential Revision: https://reviews.llvm.org/D86292
gcc already produces debug info with this form
-freorder-block-and-partition
clang produces this sort of thing with -fbasic-block-sections and with a
coming-soon tweak to use ranges in DWARFv5 where they can allow greater
reuse of debug_addr than the low/high_pc forms.
This fixes the case of breaking on a function name, but leaves broken
printing a variable - a follow-up commit will add that and improve the
test case to match.
Differential Revision: https://reviews.llvm.org/D94063
Add optional memory tagging extension on AArch64.
Use isAArch64() instead of listing the AArch64 triples,
which fixes us not recognising aarch64_be.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D94084
The scoped enum tests depend on DW_AT_enum_class which was added in
Dwarf 4.
I made part of the test conditional on the Dwarf version instead of
splitting it into a separate test and using the decorator to avoid the
overhead of setting up the test.
Add stN aliases for the FPU (stmmN) registers on MacOSX. This should
improve compatibility between MacOSX and other platforms, and partially
fix x86*-fp-write tests without having to duplicate them. Note that
the tests are currently still broken due to ftag incompatibility.
Differential Revision: https://reviews.llvm.org/D91847
1 - Partial Statements
The interpreter loop runs every line it receives, so partial
Lua statements are not being handled properly. This is a problem for
multiline breakpoint scripts since the interpreter loop, for this
particular case, is just an abstraction to a partially parsed function
body declaration.
This patch addresses this issue and as a side effect improves the
general Lua interpreter loop as well. It's now possible to write partial
statements in the 'script' command.
Example:
(lldb) script
>>> do
..> local a = 123
..> print(a)
..> end
123
The technique implemented is the same as the one employed by Lua's own REPL implementation.
Partial statements always errors out with the '<eof>' tag in the error
message.
2 - CheckSyntax in Lua.h
In order to support (1), we need an API for just checking the syntax of string buffers.
3 - Multiline scripted breakpoints
Finally, with all the base features implemented this feature is
straightforward. The interpreter loop behaves exactly the same, the
difference is that it will aggregate all Lua statements into the body of
the breakpoint function. An explicit 'quit' statement is needed to exit the
interpreter loop.
Example:
(lldb) breakpoint command add -s lua
Enter your Lua command(s). Type 'quit' to end.
The commands are compiled as the body of the following Lua function
function (frame, bp_loc, ...) end
..> print(456)
..> a = 123
..> quit
Differential Revision: https://reviews.llvm.org/D93481
Emit os_signposts when supported from LLDB's timer class. A vast amount
of performance sensitive places in LLDB are already instrumented with
the Timer class.
By emitting signposts we can examine this information in Instruments. I
recommend looking at Daniel's differential for why this is so powerful:
https://reviews.llvm.org/D52954.
Differential revision: https://reviews.llvm.org/D93657
In split DWARF v5 files, the DWO id is no longer in the DW_AT_GNU_dwo_id
attribute. It's in the CU header instead. This change makes lldb look in
both places.
Differential Revision: https://reviews.llvm.org/D93444
Copy changes, including:
- NativeProcessNetBSD::GetLoadedModuleFileSpec()
and NativeProcessNetBSD::GetFileLoadAddress() methods
- split x86 register sets by CPU extensions
- use offset/size-based register reading/writing
Differential Revision: https://reviews.llvm.org/D93541
As of Linux 5.10, the kernel may report either of the two following
crash reasons:
- SEGV_MTEAERR: async MTE tag check fault
- SEGV_MTESERR: sync MTE tag check fault
Teach LLDB about them.
Differential Revision: https://reviews.llvm.org/D93495
The tests don't work with remote debugservers. This isn't a problem with
any particular test, but the test infrastructure itself, which is why
each of these tests has a @skipIfDarwinEmbedded decorator.
This patch replaces that with a central category-based solution. It also
moves the ad-hoc windows skipping mechanism there too.
GetCommandSPExact is called exaclty once with include_aliases set to
true, so make it a default argument. Use early returns to simplify the
implementation.
This patch introduces a LLDB_SCOPED_TIMER macro to hide the needlessly
repetitive creation of scoped timers in LLDB. It's similar to the
LLDB_LOG(F) macro.
Differential revision: https://reviews.llvm.org/D93663
This uses the same approach as the debug info tests to avoid needing to
explicitly spell out the two kinds of tests. I convert a handful of
tests to the new mechanism. The rest will be converted in follow-up
patches.
This is a speculative fix when looking at the finalization code in
Process. It tackles the following issues:
- Adds synchronization to prevent races between threads.
- Marks the process as finalized/invalid as soon as Finalize is called
rather than at the end.
- Simplifies the code by using only a single instance variable to track
finalization.
Differential revision: https://reviews.llvm.org/D93479
Nearly all of our lldb-server tests have two flavours (lldb-server and
debugserver). Each of them is tagged with an appropriate decorator, and
each of them starts with a call to a matching "init" method. The init
calls are mandatory, and it's not possible to meaningfully combine them
with a different decorator.
This patch leverages the existing decorators to also tag the tests with
the appropriate debug server tag, similar to how we do with debug info
flavours. This allows us to make the "init" calls from inside the common
setUp method.
Use RegSetKind enum for register sets everything, rather than int.
Always spell it as 'RegSetKind', without unnecessary 'enum'. Add
missing switch case. While at it, use uint32_t for regnums
consistently.
Differential Revision: https://reviews.llvm.org/D93450
Replace the wrong code in GetRegisterSetCount() with a constant return.
The original code passed register index in place of register set index,
effectively getting always true. Correcting the code to check for
register set existence is not possible as LLDB supports only eliminating
last register sets. Just return the full number for now which should
be NFC.
Differential Revision: https://reviews.llvm.org/D93396