There were some problems unearthed with version 5,
which I am going to look at.
Differential Revision: https://reviews.llvm.org/D49613
llvm-svn: 337612
1. Pack std::pair<bool, unsigned> in CXXBasePaths::ClassSubobjects.
2. Use a SmallPtrSet instead of a SmallDenseSet for CXXBasePaths::VisitedDependentRecords.
3. Reorder some members of CXXBasePaths to save 8 bytes.
4. Use a SmallSetVector instead of a SetVector in CXXBasePaths::ComputeDeclsFound to avoid some allocations.
This speeds up an -fsyntax-only on all of Boost by approx 0.15%,
mainly by speeding up CXXBasePaths::lookupInBases by
approx 10%. No functional changes.
Patch by Bruno Ricci!
Differential Revision: https://reviews.llvm.org/D49302
llvm-svn: 337607
This reapplies commit r337489 reverted by r337541
Additionally, this commit contains a speculative fix to the issue reported in r337541
(the report does not contain an actionable reproducer, just a stack trace)
llvm-svn: 337606
A DAG-NOT-DAG is a CHECK-DAG group, X, followed by a CHECK-NOT group,
N, followed by a CHECK-DAG group, Y. Let y be the initial directive
of Y. This patch makes the following changes to the behavior:
1. Directives in N can no longer match within part of Y's match
range just because y happens not to be the earliest match from
Y. Specifically, this patch withdraws N's search range end
from y's match range start to Y's match range start.
2. y can no longer match within X's match range, where a y match
produced a reordering complaint, which is thus no longer
possible. Specifically, this patch withdraws y's search range
start from X's permitted range start to X's match range end,
which was already the search range start for other members of
Y.
Both of these changes can only increase the number of test passes: #1
constrains the ability of CHECK-NOTs to match, and #2 expands the
ability of CHECK-DAGs to match without complaints.
These changes are based on discussions at:
<http://lists.llvm.org/pipermail/llvm-dev/2018-May/123550.html>
<https://reviews.llvm.org/D47106>
which conclude that:
1. These changes simplify the FileCheck conceptual model. First,
it makes search ranges for DAG-NOT-DAG more consistent with
other cases. Second, it was confusing that y was treated
differently from the rest of Y.
2. These changes add theoretical use cases for DAG-NOT-DAG that
had no obvious means to be expressed otherwise. We can justify
the first half of this assertion with the observation that
these changes can only increase the number of test passes.
3. Reordering detection for DAG-NOT-DAG had no obvious real
benefit.
We don't have evidence from real uses cases to help us debate
conclusions #2 and #3, but #1 at least seems intuitive.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D48986
llvm-svn: 337605
Summary:
Add basic support for --rename-section=old=new to llvm-objcopy.
A full replacement for GNU objcopy requires also modifying flags (i.e. --rename-section=old=new,flag1,flag2); I'd like to keep that in a separate change to keep this simple.
Reviewers: jakehehrlich, alexshap
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49576
llvm-svn: 337604
When shadow stack from Intel CET is enabled, the first instruction of all
indirect branch targets must be a special instruction, ENDBR.
lib/asan/asan_interceptors.cc has
...
int res = REAL(swapcontext)(oucp, ucp);
...
REAL(swapcontext) is a function pointer to swapcontext in libc. Since
swapcontext may return via indirect branch on x86 when shadow stack is
enabled, as in this case,
int res = REAL(swapcontext)(oucp, ucp);
^^^^^^^^^^^^^^^^^^^^^^^^^^^^ This function may be
returned via an indirect branch.
Here compiler must insert ENDBR after call, like
call *bar(%rip)
endbr64
I opened an LLVM bug:
https://bugs.llvm.org/show_bug.cgi?id=38207
to add the indirect_return attribute so that it can be used to inform
compiler to insert ENDBR after REAL(swapcontext) call. We mark
REAL(swapcontext) with the indirect_return attribute if it is available.
This fixed:
https://bugs.llvm.org/show_bug.cgi?id=38249
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D49608
llvm-svn: 337603
Submitted on behalf of Annie Cherkaev (@anniecherk)
Added a flag which, when enabled, documents only those methods and
fields which have a Public attribute.
Differential Revision: https://reviews.llvm.org/D48395
llvm-svn: 337602
If a binary is stripped, which can remove discardable sections (except
for the .reloc section, which also is marked as discardable as it isn't
loaded at runtime, only read by the loader), the .reloc section should
be first of them, in order not to create gaps in the image.
Previously, binaries with relocations were broken if they were stripped
by GNU binutils strip. Trying to execute such binaries produces an error
about "xx is not a valid win32 application".
This fixes GNU binutils bug 23348.
Prior to SVN r329370 (which didn't intend to have functional changes),
the code for moving discardable sections to the end didn't clearly
express how other discardable sections should be ordered compared to
.reloc, but the change retained the exact same end result as before.
After SVN r329370, the code (and comments) more clearly indicate that
it tries to make the .reloc section the absolutely last one; this patch
changes that.
This matches how GNU binutils ld sorts .reloc compared to dwarf debug
info sections.
Differential Revision: https://reviews.llvm.org/D49351
Signed-off-by: Martin Storsjö <martin@martin.st>
llvm-svn: 337598
Incidentally all allocations that we currently perform were
properly aligned, but this was only an accident.
Thanks to Erik Pilkington for catching this.
llvm-svn: 337596
deprecating SymbolResolver and AsynchronousSymbolQuery.
Both lookup overloads take a VSO search order to perform the lookup. The first
overload is non-blocking and takes OnResolved and OnReady callbacks. The second
is blocking, takes a boolean flag to indicate whether to wait until all symbols
are ready, and returns a SymbolMap. Both overloads take a RegisterDependencies
function to register symbol dependencies (if any) on the query.
llvm-svn: 337595
This discards the unresolved symbols set and returns the flags map directly
(rather than mutating it via the first argument).
The unresolved symbols result made it easy to chain lookupFlags calls, but such
chaining should be rare to non-existant (especially now that symbol resolvers
are being deprecated) so the simpler method signature is preferable.
llvm-svn: 337594
A search order is a list of VSOs to be searched linearly to find symbols. Each
VSO now has a search order that will be used when fixing up definitions in that
VSO. Each VSO's search order defaults to just that VSO itself.
This is a first step towards removing symbol resolvers from ORC altogether. In
practice symbol resolvers tended to be used to implement a search order anyway,
sometimes with additional programatic generation of symbols. Now that VSOs
support programmatic generation of definitions via fallback generators, search
orders provide a cleaner way to achieve the desired effect (while removing a lot
of boilerplate).
llvm-svn: 337593
Ideally our ISD node types going into the isel table would have types consistent with their instruction domain. This prevents us having to duplicate patterns with different types for the same instruction.
Unfortunately, it seems our shuffle combining is currently relying on this a little remove some bitcasts. This seems to enable some switching between shufps and shufd. Hopefully there's some way we can address this in the combining.
Differential Revision: https://reviews.llvm.org/D49280
llvm-svn: 337590
CombineTo is most useful when you need to replace multiple results, avoid the worklist management, or you need to something else after the combine, etc. Otherwise you should be able to just return the new node and let DAGCombiner go through its usual worklist code.
All of the places changed in this patch look to be standard cases where we should be able to use the more stand behavior of just returning the new node.
Differential Revision: https://reviews.llvm.org/D49569
llvm-svn: 337589
CUDA-9.2 made all integer SIMD functions into compiler builtins,
so clang no longer has access to the implementation of these
functions in either headers of libdevice and has to provide
its own implementation.
This is mostly a 1:1 mapping to a corresponding PTX instructions
with an exception of vhadd2/vhadd4 that don't have an equivalent
instruction and had to be implemented with a bit hack.
Performance of this implementation will be suboptimal for SM_50
and newer GPUs where PTXAS generates noticeably worse code for
the SIMD instructions compared to the code it generates
for the inline assembly generated by nvcc (or used to come
with CUDA headers).
Differential Revision: https://reviews.llvm.org/D49274
llvm-svn: 337587
Discovered because of: https://bugs.llvm.org/show_bug.cgi?id=38235
It seems to me that a scoped enum should NOT be an integral constant expression
without a cast, so this seems like a sensical change.
Attributes that check for an integer parameter simply use this function to
ensure that they have an integer, so it was previously allowing a scoped enum.
Also added a test based on Richard's feedback to ensure that case labels still work.
Differential Revision: https://reviews.llvm.org/D49599
llvm-svn: 337585
This adds initial support for a demangling library (LLVMDemangle)
and tool (llvm-undname) for demangling Microsoft names. This
doesn't cover 100% of cases and there are some known limitations
which I intend to address in followup patches, at least until such
time that we have (near) 100% test coverage matching up with all
of the test cases in clang/test/CodeGenCXX/mangle-ms-*.
Differential Revision: https://reviews.llvm.org/D49552
llvm-svn: 337584
ItaniumDemangle had a small NFC refactor to make some of its
code reusable by the newly added Microsoft demangler. To keep
the libcxxabi demangler as close as possible to the master copy
this refactor is being merged over.
Differential Revision: https://reviews.llvm.org/D49575
llvm-svn: 337582
Summary:
When splitting predecessors in BasicBlockUtils, we create a new block as an immediate predecessor of the original BB, then we connect a given set of predecessors to the new block.
The API in this patch will be used to update MemoryPhis for this CFG change.
If all predecessors are being moved, we move the MemoryPhi directly. Otherwise we create a new MemoryPhi in the NewBB and populate its incoming values, while deleting them from BB's Phi.
[Split from D45299 for easier review]
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D49156
llvm-svn: 337581
no-ops.
A non-escaping block on the stack will never be called after its
lifetime ends, so it doesn't have to be copied to the heap. To prevent
a non-escaping block from being copied to the heap, this patch sets
field 'isa' of the block object to NSConcreteGlobalBlock and sets the
BLOCK_IS_GLOBAL bit of field 'flags', which causes the runtime to treat
the block as if it were a global block (calling _Block_copy on the block
just returns the original block and calling _Block_release is a no-op).
Also, a new flag bit 'BLOCK_IS_NOESCAPE' is added, which allows the
runtime or tools to distinguish between true global blocks and
non-escaping blocks.
rdar://problem/39352313
Differential Revision: https://reviews.llvm.org/D49303
llvm-svn: 337580
`VM_MEMORY_SANITIZER`.
It turns out that `VM_MEMORY_ANALYSIS_TOOL` is already reserved for
use by other tools so switch to a tag reserved for use by the Sanitizers.
rdar://problem/41969783
Differential Revision: https://reviews.llvm.org/D49603
llvm-svn: 337579
We can safely use getConstant here as we're still lowering, which allows constant folding to kick in and simplify the vector shift codegen.
Noticed while working on D49562.
llvm-svn: 337578
Enable the optimization of operations on DPR and SPR via a feature instead
of checking the target.
Differential revision: https://reviews.llvm.org/D49463
llvm-svn: 337575
This is a new modernized VS integration installer. It adds a
Visual Studio .sln file which, when built, outputs a VSIX that can
be used to install ourselves as a "real" Visual Studio Extension.
We can even upload this extension to the visual studio marketplace.
This fixes a longstanding problem where we didn't support installing
into VS 2017 and higher. In addition to supporting VS 2017, due
to the way this is written we now longer need to do anything special
to support future versions of VS as well. Everything should
"just work". This also fixes several bugs with our old integration,
such as MSBuild triggering full rebuilds when /Zi was used.
Finally, we add a new UI page called "LLVM" which becomes visible
when the LLVM toolchain is selected. For now this only contains
one option which is the path to clang-cl.exe, but in the future
we can add more things here.
Differential Revision: https://reviews.llvm.org/D42762
llvm-svn: 337572
When pointer checking is enabled, it's important that every pointer is
checked before its value is used.
For stores MSan used to generate code that calculates shadow/origin
addresses from a pointer before checking it.
For userspace this isn't a problem, because the shadow calculation code
is quite simple and compiler is able to move it after the check on -O2.
But for KMSAN getShadowOriginPtr() creates a runtime call, so we want the
check to be performed strictly before that call.
Swapping materializeChecks() and materializeStores() resolves the issue:
both functions insert code before the given IR location, so the new
insertion order guarantees that the code calculating shadow address is
between the address check and the memory access.
llvm-svn: 337571
Summary: In Python 3, sys.stdout.write expects a string rather than bytes. In order to be able to write the bytes to stdout, we need to use the buffer directly instead. This change is borrowing the implementation for writing to stdout that cat.py uses. Note that we cannot use cat.py directly because the file we are trying to open is a gzip file.
Reviewers: asmith, bkramer, alexshap, jakehehrlich
Reviewed By: alexshap, jakehehrlich
Subscribers: jakehehrlich, llvm-commits
Differential Revision: https://reviews.llvm.org/D49515
llvm-svn: 337567
Summary:
Each of the four methods had a dozen lines and was doing almost exactly
the same thing: get the appropriate accelerator table kind and insert an
entry into it. I move this common logic to a helper function and make
these methods delegate to it.
This came up in the context of D49493, where I've needed to make adding
a string to a string pool slightly more complicated, and it seemed to
make sense to do it in one place instead of five.
To make this work I've needed to unify the interface of the AccelTable
data types, as some used to store DIE& and others DIE*. I chose to unify
to a reference as that's what the caller uses.
This technically isn't NFC, because it changes the StringPool used for
apple tables in the DWO case (now it uses the main file like DWARF v5
instead of the DWO file). However, that shouldn't matter, as DWO is not
a thing on apple targets (clang frontend simply ignores -gsplit-dwarf).
Reviewers: JDevlieghere, aprantl, probinson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49542
llvm-svn: 337562