The linkage of the global entries must be weak to enable support of
redefinition of the same target regions in multiple compilation units.
llvm-svn: 331768
Emit error messages instead of compiler crashing when the target region
does not exist in the device code + fix crash when the location comes
from macros.
llvm-svn: 331195
variables.
Added emission of the offloading data sections for the variables within
declare target regions + fixes emission of the declare target variables
marked as declare target not within the declare target region.
llvm-svn: 328888
Summary:
This patch also adds the 'DW_AT_artificial' flag to the generated variable.
Addresses the issues mentioned in http://llvm.org/PR30553.
Reviewers: CarlosAlbertoEnciso, probinson, aprantl
Reviewed By: aprantl
Subscribers: JDevlieghere, cfe-commits
Differential Revision: https://reviews.llvm.org/D43189
llvm-svn: 324988
Summary:
This patch enables debugging of C99 VLA types by generating more precise
LLVM Debug metadata, using the extended DISubrange 'count' field that
takes a DIVariable.
This should implement:
Bug 30553: Debug info generated for arrays is not what GDB expects (not as good as GCC's)
https://bugs.llvm.org/show_bug.cgi?id=30553
Reviewers: echristo, aprantl, dexonsmith, clayborg, pcc, kristof.beyls, dblaikie
Reviewed By: aprantl
Subscribers: jholewinski, schweitz, davide, fhahn, JDevlieghere, cfe-commits
Differential Revision: https://reviews.llvm.org/D41698
llvm-svn: 323952
only.
Added support for -fopenmp-simd option that allows compilation of
simd-based constructs without emission of OpenMP runtime calls.
llvm-svn: 321560
This clang patch changes the __tgt_* API function signatures in preparation for the new map interface.
Changes are: Device IDs 32bits --> 64bits, Flags 32bits --> 64bits
Differential revision: https://reviews.llvm.org/D40281
llvm-svn: 318789
Previously we may erroneously try to capture locally declared static
variables, which will lead to crash for target-based constructs.
Patch fixes this problem.
llvm-svn: 315076
directives.
The argument of the `device` clause in target-based executable
directives must be captured to support codegen for the `target`
directives with the `depend` clauses.
llvm-svn: 314686
Simplified and generalized codegen for non-offloading part that works if
offloading is failed or condition of the `if` clause is `false`.
llvm-svn: 314670
directives.
If the variable is used in the target-based region but is not found in
any private|mapping clause, then generate implicit firstprivate|map
clauses for these implicitly mapped variables.
llvm-svn: 314205
If the captured variable has re-declaration we may end up with the
situation where the captured variable is the re-declaration while the
referenced variable is the canonical declaration (or vice versa). In
this case we may generate wrong code. Patch fixes this situation.
llvm-svn: 313995
Currently, if the some of the parameters are captured by value, this
argument is converted to uintptr_t type and thus we loosing the debug
info about real type of the argument (captured variable):
```
void @.outlined_function.(uintptr %par);
...
%a = alloca i32
%a.casted = alloca uintptr
%cast = bitcast uintptr* %a.casted to i32*
%a.val = load i32, i32 *%a
store i32 %a.val, i32 *%cast
%a.casted.val = load uintptr, uintptr* %a.casted
call void @.outlined_function.(uintptr %a.casted.val)
...
```
To resolve this problem, in debug mode a speciall external wrapper
function is generated, that calls the outlined function with the correct
parameters types:
```
void @.wrapper.(uintptr %par) {
%a = alloca i32
%cast = bitcast i32* %a to uintptr*
store uintptr %par, uintptr *%cast
%a.val = load i32, i32* %a
call void @.outlined_function.(i32 %a)
ret void
}
void @.outlined_function.(i32 %par);
...
%a = alloca i32
%a.casted = alloca uintptr
%cast = bitcast uintptr* %a.casted to i32*
%a.val = load i32, i32 *%a
store i32 %a.val, i32 *%cast
%a.casted.val = load uintptr, uintptr* %a.casted
call void @.wrapper.(uintptr %a.casted.val)
...
```
llvm-svn: 306697
Summary:
This patch adds two fields to the offload entry descriptor. One field is meant to signal Ctors/Dtors and `link` global variables, and the other is reserved for runtime library use.
Currently, these fields are only filled with zeros in the current code generation, but that will change when `declare target` is added.
The reason, we are adding these fields now is to make the code generation consistent with the runtime library proposal under review in https://reviews.llvm.org/D14031.
Reviewers: ABataev, hfinkel, carlo.bertolli, kkwli0, arpith-jacob, Hahnfeld
Subscribers: cfe-commits, caomhin, jholewinski
Differential Revision: https://reviews.llvm.org/D28298
llvm-svn: 291124
Summary: This patch changes the options used by offloading to start with -fopenmp instead of -fomp. This makes the option naming more consistent and materializes a suggestion by Richard Smith in http://reviews.llvm.org/D9888.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, ABataev
Subscribers: kkwli0, cfe-commits, caomhin
Differential Revision: http://reviews.llvm.org/D21841
llvm-svn: 274283
Summary: This patch changes the bits used to specify the map types according to the latest version of the libomptarget document and add the support for zero size array section when pointers are being implicitly mapped. This completes the missing new 4.5 map semantics.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: caomhin, cfe-commits
Differential Revision: http://reviews.llvm.org/D20111
llvm-svn: 270868
Summary:
The current offloading implementation is using -omptargets and -omp-host-ir-file-path options in the frontend. This causes the user a lot of trouble due to to the conflicts with the -o option. E.g. if the user misspells omptargets he will end up with a file with a weird name.
This patches replaces these two options with -fomptargets and -fomp-host-ir-file-path to avoid these issues, and it is also more consistent with the other options like -fopenmp.
Reviewers: hfinkel, carlo.bertolli, arpith-jacob, kkwli0, ABataev
Subscribers: cfe-commits, caomhin, fraggamuffin
Differential Revision: http://reviews.llvm.org/D18112
llvm-svn: 263442
This patch attempts to fix the regressions identified when the patch was committed initially.
Thanks to Michael Liao for identifying the fix in the offloading metadata generation
related with side effects in evaluation of function arguments.
llvm-svn: 256933
Summary:
In order to offloading work properly two things need to be in place:
- a descriptor with all the offloading information (device entry functions, and global variable) has to be created by the host and registered in the OpenMP offloading runtime library.
- all the device functions need to be emitted for the device and a convention has to be in place so that the runtime library can easily map the host ID of an entry point with the actual function in the device.
This patch adds support for these two things. However, only entry functions are being registered given that 'declare target' directive is not yet implemented.
About offloading descriptor:
The details of the descriptor are explained with more detail in http://goo.gl/L1rnKJ. Basically the descriptor will have fields that specify the number of devices, the pointers to where the device images begin and end (that will be defined by the linker), and also pointers to a the begin and end of table whose entries contain information about a specific entry point. Each entry has the type:
```
struct __tgt_offload_entry{
void *addr;
char *name;
int64_t size;
};
```
and will be implemented in a pre determined (ELF) section `.omp_offloading.entries` with 1-byte alignment, so that when all the objects are linked, the table is in that section with no padding in between entries (will be like a C array). The code generation ensures that all `__tgt_offload_entry` entries are emitted in the same order for both host and device so that the runtime can have the corresponding entries in both host and device in same index of the table, and efficiently implement the mapping.
The resulting descriptor is registered/unregistered with the runtime library using the calls `__tgt_register_lib` and `__tgt_unregister_lib`. The registration is implemented in a high priority global initializer so that the registration happens always before any initializer (that can potentially include target regions) is run.
The driver flag -omptargets= was created to specify a comma separated list of devices the user wants to support so that the new functionality can be exercised. Each device is specified with its triple.
About target codegen:
The target codegen is pretty much straightforward as it reuses completely the logic of the host version for the same target region. The tricky part is to identify the meaningful target regions in the device side. Unlike other programming models, like CUDA, there are no already outlined functions with attributes that mark what should be emitted or not. So, the information on what to emit is passed in the form of metadata in host bc file. This requires a new option to pass the host bc to the device frontend. Then everything is similar to what happens in CUDA: the global declarations emission is intercepted to check to see if it is an "interesting" declaration. The difference is that instead of checking an attribute, the metadata information in checked. Right now, there is only a form of metadata to pass information about the device entry points (target regions). A class `OffloadEntriesInfoManagerTy` was created to manage all the information and queries related with the metadata. The metadata looks like this:
```
!omp_offload.info = !{!0, !1, !2, !3, !4, !5, !6}
!0 = !{i32 0, i32 52, i32 77426347, !"_ZN2S12r1Ei", i32 479, i32 13, i32 4}
!1 = !{i32 0, i32 52, i32 77426347, !"_ZL7fstatici", i32 461, i32 11, i32 5}
!2 = !{i32 0, i32 52, i32 77426347, !"_Z9ftemplateIiET_i", i32 444, i32 11, i32 6}
!3 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 99, i32 11, i32 0}
!4 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 272, i32 11, i32 3}
!5 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 127, i32 11, i32 1}
!6 = !{i32 0, i32 52, i32 77426347, !"_Z3fooi", i32 159, i32 11, i32 2}
```
The fields in each metadata entry are (in sequence):
Entry 1) an ID of the type of metadata - right now only zero is used meaning "OpenMP target region".
Entry 2) a unique ID of the device where the input source file that contain the target region lives.
Entry 3) a unique ID of the file where the input source file that contain the target region lives.
Entry 4) a mangled name of the function that encloses the target region.
Entries 5) and 6) line and column number where the target region was found.
Entry 7) is the order the entry was emitted.
Entry 2) and 3) are required to distinguish files that have the same function name.
Entry 4) is required to distinguish different instances of the same declaration (usually templated ones)
Entries 5) and 6) are required to distinguish the particular target region in body of the function (it is possible that a given target region is not an entry point - if clause can evaluate always to zero - and therefore we need to identify the "interesting" target regions. )
This patch replaces http://reviews.llvm.org/D12306.
Reviewers: ABataev, hfinkel, tra, rjmccall, sfantao
Subscribers: FBrygidyn, piotr.rak, Hahnfeld, cfe-commits
Differential Revision: http://reviews.llvm.org/D12614
llvm-svn: 256842
Summary:
This patch implements the 4.5 specification for the implicit data maps. OpenMP 4.5 specification changes the default way data is captured into a target region. All the non-aggregate kinds are passed by value by default. This required activating the capturing by value during SEMA for the target region. All the non-aggregate values that can be encoded in the size of a pointer are properly casted and forwarded to the runtime library. On top of fixing the previous weird behavior for mapping pointers in nested data regions (an explicit map was always required), this also improves performance as the number of allocations/transactions to the device per non-aggregate map are reduced from two to only one - instead of passing a reference and the value, only the value passed.
Explicit maps will be added later on once firstprivate, private, and map clauses' SEMA and parsing are available.
Reviewers: hfinkel, rjmccall, ABataev
Subscribers: cfe-commits, carlo.bertolli
Differential Revision: http://reviews.llvm.org/D14940
llvm-svn: 254521
This patch implements the outlining for offloading functions for code
annotated with the OpenMP target directive. It uses a temporary naming
of the outlined functions that will have to be updated later on once
target side codegen and registration of offloading libraries is
implemented - the naming needs to be made unique in the produced
library.
llvm-svn: 249148