When we generate code for a whole region we have to respect dominance
and update it too.
The first is achieved with multiple "BBMap"s. Each copied block in the
region gets its own map. It is initialized only with values mapped in
the immediate dominator block, if this block is in the region and was
therefor already copied. This way no values defined in a block that
doesn't dominate the current one will be used.
To update dominance information we check if the immediate dominator of
the original block we want to copy is in the region. If so we set the
immediate dominator of the current block to the copy of the immediate
dominator of the original block.
llvm-svn: 230774
After a function was created we will verify it for Debug builds. If
errors are found and debug-type equals "polly-codegen-isl" the SCoP,
the isl AST, the function as well as the errors will be printed.
llvm-svn: 230767
isl recently introduced a new interface to create run-time checks from
constraint sets. Use this interface to simplify our run-time check generation.
llvm-svn: 230640
For Polly the two interesting changes are short_circuit && and || AST
expressions as well as the introduction of isl_ast_build_expr_from_set,
a well defined interface to compute ast expressions from constraint sets.
llvm-svn: 230636
With the patches r230325, r230329 and r230340 we can handle non-affine
control flow in (loop-free) subregions. As all LLVM test-suite tests pass and
we get ~20% more non-trivial SCoPs, we activate it now by default.
llvm-svn: 230624
This update contains:
- Fixes of minor issues detected by clang's scan_build
- More schedule tree infrastructure additions
This update slightly changes the output of our dependence analysis, but these
changes are purely syntactially.
llvm-svn: 230528
This is the code generation for region statements that are created
when non-affine control flow was present in the input. A new
generator, similar to the block or vector generator, for regions is
used to traverse and copy the region statement and to adjust the
control flow inside the new region in the end.
llvm-svn: 230340
This allows us to model non-affine regions in the SCoP representation.
SCoP statements can now describe either basic blocks or non-affine
regions. In the latter case all accesses in the region are accumulated
for the statement and write accesses, except in the entry, have to be
marked as may-write.
Differential Revision: http://reviews.llvm.org/D7846
llvm-svn: 230329
With this patch we allow the SCoP detection to detect regions as SCoPs
which have non-affine control flow inside. All non-affine regions are
tracked and later accessible to the ScopInfo.
As there is no real difference, non-affine branches as well as
floating point branches are covered (and both called non-affine
control flow). However, the detection is restricted to
overapproximate only loop free regions.
llvm-svn: 230325
Scops that only read seem generally uninteresting and scops that only write are
most likely initializations where there is also little to optimize. To not
waste compile time we bail early.
Differential Revision: http://reviews.llvm.org/D7735
llvm-svn: 229820
This is just a single commit that includes a performance optimization that
should improve dependence analysis time. Our performance bots should measure
this difference.
llvm-svn: 229476
This commit imports the latest isl version into lib/External/isl. The changes
relavant for Polly are:
1) Schedule trees [1] have been introduced as a more structured way to
describe schedules. Polly does not yet use them, but we may switch to them
in the near future.
2) Another set of coalescing changes [2] simplifies some data dependences and
removes a couple of code generation artifacts.
We now understand that the following sets can be merged:
{ Stmt_S1[i0, i1] -> Stmt_S2[i0 + i1] :
i0 >= 0 and i1 <= 1023 - i0 and i1 >= 1
Stmt_S1[i0, 0] -> Stmt_S2[i0] : i0 <= 1023 and i0 >= 1}
into:
{ Stmt_S1[i0, i1] -> Stmt_S2[i0 + i1] : i1 <= 1023 - i0 and i1 >= 0 and
i1 >= 1 - i0 and i0 >= 0 }
Changes of this kind reduce unnecessary specialization during code
generation.
- for (int c3 = 0; c3 <= 1023; c3 += 1) {
- if (c3 % 2 == 0) {
- Stmt_for_body3(c1, c3);
- } else
- Stmt_for_body3(c1, c3);
- }
+ for (int c3 = 0; c3 <= 1023; c3 += 1)
+ Stmt_for_body3(c1, c3);
[1] http://impact.gforge.inria.fr/impact2014/papers/impact2014-verdoolaege.pdf
[2] http://impact.gforge.inria.fr/impact2015/papers/impact2015-verdoolaege.pdf
llvm-svn: 229423
Alias checks might become costly if there are divisions that complicate the
description of the accessed locations. By overaproximating them we get fairly
accurate results without the huge compile time cost.
llvm-svn: 229252
namespace and header rather than the top-level header and using
declarations. These helpers impede modular builds and are going away.
Migrating away from them will also be necessary to start mixing in any
usage of the new pass manager.
llvm-svn: 229091
Without this change we get linker errors such as:
undefined reference to `llvm::dbgs()'
We only conditionally link in these libraries, as in BUILD_SHARED_LIBS=OFF mode,
linking in these libraries causes such functions (and especially global options)
to be defined twice. The "solution" I choose is most likely not ideal, but seems
to work. If any cmake specialist can suggest a better approach, this would be
appreciated.
We also drop a .c file that is not needed as it caused linker errors as well.
llvm-svn: 228914
This allows us to skip ast and code generation if we did not optimize
a SCoP and will not generate parallel or alias annotations. The
initial heuristic to exit is simple but allows improvements later on.
All failing test cases have been modified to disable early exit, thus
to keep their coverage.
Differential Revision: http://reviews.llvm.org/D7254
llvm-svn: 228851
These write are important as they will force the scheduling and code
generation of an otherwise trivial statement and also impose an order of
execution needed to guarantee the correct final value for a scalar in a loop.
Added test case modeled after ClamAV/clamscan.
llvm-svn: 228847
This change has two main purposes:
1) We do not use a static interface to hide an object we create and
destroy for every basic block we copy.
2) We allow the BlockGenerator to store information between calls to
the copyBB method. This will ease scalar/phi code generation
later on.
While a lot of method signatures were changed this should not cause
any real behaviour change.
Differential Revision: http://reviews.llvm.org/D7467
llvm-svn: 228443
This allows us to model PHI nodes in the polyhedral description
without demoting them. The modeling however will result in the
same accesses as the demotion would have introduced.
Differential Revision: http://reviews.llvm.org/D7415
llvm-svn: 228433
With this patch Polly is always GPL-free (no dependency on GMP any more). As a
result, building and distributing Polly will be easier. Furthermore, there is no
need to tightly coordinate isl and Polly releases anymore.
We import isl b3e0fa7a05d as well as imath 4d707e5ef2. These are the git
versions Polly currently was tested with when using utils/checkout_isl.sh. The
imported libraries are both MIT-style licensed.
We build isl and imath with -fvisibility=hidden to avoid clashes in case other
projects (such as gcc) use conflicting versions of isl. The use of imath can
temporarily reduce compile-time performance of Polly. We will work on
performance tuning in tree.
Patches to isl should be contributed first to the main isl repository and can
then later be reimported to Polly.
This patch is also a prerequisite for the upcoming isl C++ interface.
llvm-svn: 228193
The support is currently limited as we only allow them in the input but do
not emit them in the transformed SCoP due to the possible semantic changes.
Differential Revision: http://reviews.llvm.org/D5225
llvm-svn: 227054
lets 'ninja check-polly' pass for me with a lib64 build of LLVM.
I've not updated the standalone side as I don't use it and don't have an
easy way to test any changes I've made there. I mostly wanted to be able
to actually run Polly's tests when I update its use of LLVM's APIs
during my refactorings on the (very unlikely) off chance that I make
a change which compiles but does the wrong thing.
llvm-svn: 226420
This change ensures that the values that represent the array size of a
multi-dimensional access are correctly sign-extended when used to compute a
memory address used in the run-time alias check.
To make the test case more readable, we name the instructions that we generate.
llvm-svn: 225818
The max loop depth was incorrectly computed for scops that contain a
block from a loop but do not contain the entire loop. We need to
check that the full loop is contained in the region when computing
the max loop depth.
These scops occur when a region containing an inner loop is expanded
to include some blocks from the outer loop, but it cannot be fully
expanded to contain the outer loop because the region containing the
outer loop is invalid.
Differential Revision: http://reviews.llvm.org/D6913
llvm-svn: 225812
This support is still incomplete and consequently hidden behind a switch that
needs to be enabled. One problem is ATM that we incorrectly interpret very large
unsigned values as negative values even if used in an unsigned comparision.
llvm-svn: 225480
AF = dyn_cast<SCEVAddRecExpr>(Pair.second) may be NULL for some SCEVs that we do
not support. When reporting the error we still want to pass a pointer that is
known to always be non-NULL.
I do not yet have a test case for this, unfortunately.
llvm-svn: 225461