I first had a more invasive patch for this (D101069), but while trying
to get that polished for review I realized that lld's current symbol
merging semantics mean that only a very small code change is needed.
So this goes with the smaller patch for now.
This has no effect on projects that build with -fvisibility=hidden
(e.g. chromium), since these see .private_extern symbols instead.
It does have an effect on projects that build with -fvisibility-inlines-hidden
(e.g. llvm) in -O2 builds, where LLVM's GlobalOpt pass will promote most inline
functions from .weak_definition to .weak_def_can_be_hidden.
Before this patch:
% ls -l out/gn/bin/clang out/gn/lib/libclang.dylib
-rwxr-xr-x 1 thakis staff 113059936 Apr 22 11:51 out/gn/bin/clang
-rwxr-xr-x 1 thakis staff 86370064 Apr 22 11:51 out/gn/lib/libclang.dylib
% out/gn/bin/llvm-objdump --macho --weak-bind out/gn/bin/clang | wc -l
8291
% out/gn/bin/llvm-objdump --macho --weak-bind out/gn/lib/libclang.dylib | wc -l
5698
With this patch:
% ls -l out/gn/bin/clang out/gn/lib/libclang.dylib
-rwxr-xr-x 1 thakis staff 111721096 Apr 22 11:55 out/gn/bin/clang
-rwxr-xr-x 1 thakis staff 85291208 Apr 22 11:55 out/gn/lib/libclang.dylib
thakis@MBP llvm-project % out/gn/bin/llvm-objdump --macho --weak-bind out/gn/bin/clang | wc -l
725
thakis@MBP llvm-project % out/gn/bin/llvm-objdump --macho --weak-bind out/gn/lib/libclang.dylib | wc -l
542
Linking clang becomes a tiny bit faster with this patch:
x 100 0.67263818 0.77847815 0.69430709 0.69877208 0.017715892
+ 100 0.67209601 0.73323393 0.68600798 0.68917346 0.012824377
Difference at 95.0% confidence
-0.00959861 +/- 0.00428661
-1.37364% +/- 0.613449%
(Student's t, pooled s = 0.0154648)
This only happens if lld with the patch and lld without the patch are both
linked with an lld with the patch or both linked with an lld without the patch
(...or with ld64). I accidentally linked the lld with the patch with an lld
without the patch and the other way round at first. In that setup, no
difference is found. That makese sense, since having fewer weak imports will
make the linked output a bit faster too. So not only does this make linking
binaries such as clang a bit faster (since fewer exports need to be written to
the export trie by lld), the linked output binary binary is also a bit faster
(since dyld needs to process fewer dynamic imports).
This also happens to fix the one `check-clang` failure when using lld as host
linker, but mostly for silly reasons: See crbug.com/1183336, mostly comment 26.
The real bug here is that c-index-test links all of LLVM both statically and
dynamically, which is an ODR violation. Things just happen to work with this
patch.
So after this patch, check-clang, check-lld, check-llvm all pass with lld as
host linker :)
Differential Revision: https://reviews.llvm.org/D101080
We had got it backwards... the minimum version of the target
should be higher than the min version of the object files, presumably
since new platforms are backwards-compatible with older formats.
Fixes PR50078.
The original commit (aa05439c9c) broke many tests that had inputs too
new for our target platform (10.0). This commit changes the inputs to
target 10.0, which was the simpler thing to do, but we should really
just have our lit.local.cfg default to targeting 10.15... we're not
likely to ever have proper support for the older versions anyway. I will
follow up with a change to that effect.
Differential Revision: https://reviews.llvm.org/D101114
We had got it backwards... the minimum version of the target
should be higher than the min version of the object files, presumably
since new platforms are backwards-compatible with older formats.
Fixes PR50078.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D101114
This diff adds initial support for the legacy LC_VERSION_MIN_* load commands.
Test plan: make check-lld-macho
Differential revision: https://reviews.llvm.org/D100523
XCode 12 ships with mismatched platforms for these libraries,
so this hack is necessary...
Fixes PR49799.
Reviewed By: #lld-macho, gkm, smeenai
Differential Revision: https://reviews.llvm.org/D100913
The minuend (but not the subtrahend) can reference a section.
Note that we do not yet properly validate that the subtrahend isn't
referencing a section; I've filed PR50034 to track that.
I've also extended the reloc-subtractor.s test to reorder symbols, to
make sure that the addends are being associated with the minuend (and not
the subtrahend) relocation.
Fixes PR49999.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D100804
It doesn't make sense to take just the base filename for archives when we emit
the full path for object files. (LLD-ELF emits the full path too.)
This will also make it easier to write a proper test for {D100147}.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D100357
I noticed two problems with the previous implementation:
* N_ALT_ENTRY symbols weren't being handled correctly -- they should
determine the size of the previous symbol, even though they don't
cause a new section to be created
* The last symbol in a section had its size calculated wrongly;
the first subsection's size was used instead of the last one
I decided to take the opportunity to refactor things as well, mainly to
realize my observation
[here](https://reviews.llvm.org/D98837#inline-931511) that we could
avoid doing a binary search to match symbols with subsections. I think
the resulting code is a bit simpler too.
N Min Max Median Avg Stddev
x 20 4.31 4.43 4.37 4.3775 0.034162922
+ 20 4.32 4.43 4.38 4.3755 0.02799906
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, alexshap
Differential Revision: https://reviews.llvm.org/D99972
We bikeshedded about it here: https://reviews.llvm.org/D98837#inline-931557
I initially suggested SubsectionMapping, but I thought the discussion
landed on doing `std::vector<SubsectionEntry>`. @alexshap went and did
both, but on hindsight I regret adding 3 more characters to an already
long name, and I think SubsectionEntry is descriptive enough...
This diff also renames `subsectionMap` to `subsecMap` for consistency
with other variable names in the codebase.
TextAPI/ELF has moved out into InterfaceStubs, so theres no longer a
need to seperate out TextAPI between formats.
Reviewed By: ributzka, int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D99811
The main challenge was handling the different on-disk structures (e.g.
`mach_header` vs `mach_header_64`). I tried to strike a balance between
sprinkling `target->wordSize == 8` checks everywhere (branchy = slow, and ugly)
and templatizing everything (causes code bloat, also ugly). I think I struck a
decent balance by judicious use of type erasure.
Note that LLD-ELF has a similar architecture, though it seems to use more templating.
Linking chromium_framework takes about the same time before and after this
change:
N Min Max Median Avg Stddev
x 20 4.52 4.67 4.595 4.5945 0.044423204
+ 20 4.5 4.71 4.575 4.582 0.056344803
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D99633
This diff addresses FIXME in SyntheticSections.cpp and removes
the dependency of emitEndFunStab on .subsections_via_symbols.
Test plan: make check-lld-macho
Differential revision: https://reviews.llvm.org/D99054
This diff is a preparation for fixing FunStabs (incorrect size calculation).
std::map<uint32_t, InputSection*> (SubsectionMap) is replaced with
a sorted vector + binary search. If .subsections_via_symbols is set
this vector will contain the list of subsections, otherwise,
the offsets will be used for calculating the symbols sizes.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D98837
This diff required fixing `getEmbeddedAddend` to apply sign
extension to 32-bit values. We were previously passing around wrong
64-bit addend values that became "right" after being truncated back to
32-bit.
I've also made `getEmbeddedAddend` return a signed int, which is similar
to what LLD-ELF does for its `getImplicitAddend`.
`reportRangeError`, `checkUInt`, and `checkInt` are counterparts of similar
functions in LLD-ELF.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D98387
SUBTRACTOR relocations are always paired with UNSIGNED
relocations to indicate a pair of symbols whose address difference we
want. Functionally they are like a single relocation: only one pointer
gets written / relocated. Previously, we would handle these pairs by
skipping over the SUBTRACTOR relocation and writing the pointer when
handling the UNSIGNED reloc. This diff reverses things, so we write
while handling SUBTRACTORs and skip over the UNSIGNED relocs instead.
Being able to distinguish between SUBTRACTOR and UNSIGNED relocs in the
write phase (i.e. inside `relocateOne`) is useful for the upcoming range
check diff: we want to check that SUBTRACTOR relocs write signed values,
but UNSIGNED relocs (naturally) write unsigned values.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D98386
The previous implementation miscalculated the addend, resulting
in an underflow. This meant that every SIGNED_N section relocation would
be associated with the last subsection (since the addend would now be a
huge number). We were "lucky" that this mistake was typically cancelled
out -- 64-to-32-bit-truncation meant that the final value was correct,
as long as subsections were not rearranged.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D98385
Previously, SyntheticSections.cpp did not have a top-level `using namespace
llvm::MachO` because it caused a naming conflict: `llvm::MachO::Symbol` would
collide with `lld::macho::Symbol`.
`MachO::Symbol` represents the symbols defined in InterfaceFiles (TBDs). By
moving the inclusion of InterfaceFile.h into our .cpp files, we can avoid this
name collision in other files where we are only dealing with LLD's own symbols.
Along the way, I removed all unnecessary "MachO::" prefixes in our code.
Cons of this approach: If TextAPI/MachO/Symbol.h gets included via some other
header file in the future, we could run into this collision again.
Alternative 1: Have either TextAPI/MachO or BinaryFormat/MachO.h use a different
namespace. Most of the benefit of `using namespace llvm::MachO` comes from being
able to use things in BinaryFormat/MachO.h conveniently; if TextAPI was under a
different (and fully-qualified) namespace like `llvm::tapi` that would solve our
problems. Cons: lots of files across llvm-project will need to be updated, and
folks who own the TextAPI code need to agree to the name change.
Alternative 2: Rename our Symbol to something like `LldSymbol`. I think this is
ugly.
Personally I think alternative #1 is ideal, but I'm not sure the effort to do it is
worthwhile, this diff's halfway solution seems good enough to me. Thoughts?
Reviewed By: #lld-macho, oontvoo, MaskRay
Differential Revision: https://reviews.llvm.org/D98149
lld policy discourages `auto`. Replace it with a type name whenever reasonable. Retain `auto` to avoid ...
* redundancy, as for decls such as `auto *t = mumble_cast<TYPE *>` or similar that specifies the result type on the RHS
* verbosity, as for iterators
* gratuitous suffering, as for lambdas
Along the way, add `const` when appropriate.
Note: a future diff will ...
* add more `const` qualifiers
* remove `opt::` when we are already `using llvm::opt`
Differential Revision: https://reviews.llvm.org/D98313
clang appears to emit symbols in `__debug_aranges`, at least
for arm64... in the examples I've seen, it doesn't seem like those
symbols are referenced outside of `__DWARF`, so I think they're safe to
ignore. But hopefully @clayborg can confirm.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D98073
We'll need to properly handle object files with multiple source inputs
eventually, but remove the assert for now so we can successfully emit binaries
for testing.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D98067
Since multiple dylibs can be defined in one TBD, this is
necessary to avoid confusion.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D97905
Previously, we were loading re-exports without checking whether
they were compatible with our target. Prior to {D97209}, it meant that
we were defining dylib symbols that were invalid -- usually a silent
failure unless our binary actually used them. D97209 exposed this as an
explicit error.
Along the way, I've extended our TAPI compatibility check to cover the
platform as well, instead of just checking the arch. To this end, I've
replaced MachO::Architecture with MachO::Target in our Config struct.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D97867
The reexport-nested-libs test added in D97438 was a bit wonky.
First, it was linking against libReexportSystem.tbd which targets the
iOS simulator, and which in turn attempted to re-export the iOS
simulator's libSystem. However, due to the way `-syslibroot` works, it
was actually re-exporting the macOS libSystem.
As a result, the test was not actually able to resolve the symbols in
the desired libSystem. I'm guessing that @oontvoo was confused by this
and therefore included those symbols in libReexportSystem.tbd itself.
But this means that the test wasn't actually testing the resolution of
re-exported symbols (though it did at least verify that the re-exported
libraries could be located).
After some consideration, I figured that stub-link.s could be extended
to cover what reexport-nested-libs.s was attempting to do. The test
targets macOS, so we only have one `-syslibroot` and no chance of
confusion.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D97866
Suppose we are linking against libFoo, which re-exports the
implicitly-bound libSystem, which in turn re-exports some
non-explicitly-bound library like `/usr/lib/system/libsystem_c.dylib`.
Then any bindings we have to a symbol in libsystem_c should use
libSystem (and not libFoo) as the umbrella library.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D97865
We previously defaulted to x86_64 and an unknown platform, which was fine when
we only supported one arch and did no platform checks, but that will no longer
be true going ahead. Therefore, we should require those flags to be specified
whenever the linker is invoked.
Note that LLD-ELF and ld64 both infer the arch from their input object files,
but the usefulness of that is questionable since clang will always specify these
flags, and most of the time `lld` will be invoked via clang.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D97799
This reverts diff D97610 (commit 0223ab035c) and adds a one-line fix to verify that a `MemoryBufferRef` has sufficient length before reading a 4-byte magic number.
Differential Revision: https://reviews.llvm.org/D97757
Currently, it was delibrately impleneted to not handle this case, but as it has turnt out, we need this feature.
The concrete use case is
`System/Library/Frameworks/Cocoa.framework/Versions/A/Cocoa` reexports
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit , which then rexports
/System/Library/PrivateFrameworks/UIFoundation.framework/Versions/A/UIFoundation
The current implemention uses a global currentTopLevelTapi, which is not reset until it finishes loading the whole tree.
This is a problem because if the top-level is set to Cocoa, then when we get to UIFoundation, it will try to find UIFoundation in the current top level, which is Cocoa and will not find it.
The right thing should be:
- When loading a library from a TBD file, re-exports need to be looked up in the auxiliary documents within the same TBD.
- When loading from an actual dylib, no additional TBD documents need to be examined.
- In no case does a re-export mentioned in one TBD file need to be looked up in a document in an auxiliary document from a different TBD file
Differential Revision: https://reviews.llvm.org/D97438
-flat_namespace makes lld emit binaries that use name lookup that's more in
line with other POSIX systems: Instead of looking up symbols as (dylib,name)
pairs by dyld, they're instead looked up just by name.
-flat_namespace has three effects:
1. MH_TWOLEVEL and MH_NNOUNDEFS are no longer set in the Mach-O header
2. All symbols use BIND_SPECIAL_DYLIB_FLAT_LOOKUP as ordinal
3. When a dylib is added to the link, its dependent dylibs are also added,
so that lld can verify that no undefined symbols remain at the end of
a link with -flat_namespace. These transitive dylibs are added for symbol
resolution, but they are not emitted in LC_LOAD_COMMANDs.
-undefined with -flat_namespace still isn't implemented. Before this change,
it was impossible to hit that combination because -flat_namespace caused a
diagnostic. Now that it no longer does, emit a dedicated temporary diagnostic
when both flags are used.
Differential Revision: https://reviews.llvm.org/D97641
There was initially some concern around the correct handling of pcrel
section relocations with r_length != 2. But it looks like there are no such
relocations in practice -- x86_64's pcrel section relocs all have r_length == 2,
and ARM64 doesn't even have pcrel section relocs. So we can replace the TODO
with an assert.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D97576
Bifurcate the `readFile()` API into ...
* `readRawFile()` which performs no checks, and
* `readLinkableFile()` which enforces minimum length of 20 bytes, same as ld64
There are no new tests because tweaks to existing tests are sufficient.
Differential Revision: https://reviews.llvm.org/D97610
On arm64, UNSIGNED relocs are the only ones that use embedded addends
instead of the ADDEND relocation.
Also ensure that the addend works when UNSIGNED is part of a SUBTRACTOR
pair.
Reviewed By: #lld-macho, alexshap
Differential Revision: https://reviews.llvm.org/D97105
Also add a few asserts to verify that we are indeed handling an
UNSIGNED relocation as the minued. I haven't made it an actual
user-facing error since I don't think llvm-mc is capable of generating
SUBTRACTOR relocations without an associated UNSIGNED.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D97103
When parsing bitcode, convert LTO Symbols to LLD Symbols in order to perform
resolution. The "winning" symbol will then be marked as Prevailing at LTO
compilation time. This is similar to what the other LLD ports do.
This change allows us to handle `linkonce` symbols correctly, and to deal with
duplicate bitcode symbols gracefully. Previously, both scenarios would result in
an assertion failure inside the LTO code, complaining that multiple Prevailing
definitions are not allowed.
While at it, I also added basic logic around visibility. We don't do anything
useful with it yet, but we do check that its value is valid. LLD-ELF appears to
use it only to set FinalDefinitionInLinkageUnit for LTO, which I think is just a
performance optimization.
From my local experimentation, the linker itself doesn't seem to do anything
differently when encountering linkonce / linkonce_odr / weak / weak_odr. So I've
only written a test for one of them. LLD-ELF has more, but they seem to mostly
be testing the intermediate bitcode output of their LTO backend...? I'm far from
an expert here though, so I might very well be missing things.
Reviewed By: #lld-macho, MaskRay, smeenai
Differential Revision: https://reviews.llvm.org/D94342
The silent failures had confused me a few times.
I haven't added a similar check for platform yet as we don't yet have logic to
infer the platform automatically, and so adding that check would require
updating dozens of test files.
Reviewed By: #lld-macho, thakis, alexshap
Differential Revision: https://reviews.llvm.org/D97209
I've adjusted the RelocAttrBits to better fit the semantics of
the relocations. In particular:
1. *_UNSIGNED relocations are no longer marked with the `TLV` bit, even
though they can occur within TLV sections. Instead the `TLV` bit is
reserved for relocations that can reference thread-local symbols, and
*_UNSIGNED relocations have their own `UNSIGNED` bit. The previous
implementation caused TLV and regular UNSIGNED semantics to be
conflated, resulting in rebase opcodes being incorrectly emitted for TLV
relocations.
2. I've added a new `POINTER` bit to denote non-relaxable GOT
relocations. This distinction isn't important on x86 -- the GOT
relocations there are either relaxable or non-relaxable loads -- but
arm64 has `GOT_LOAD_PAGE21` which loads the page that the referent
symbol is in (regardless of whether the symbol ends up in the GOT). This
relocation must reference a GOT symbol (so must have the `GOT` bit set)
but isn't itself relaxable (so must not have the `LOAD` bit). The
`POINTER` bit is used for relocations that *must* reference a GOT
slot.
3. A similar situation occurs for TLV relocations.
4. ld64 supports both a pcrel and an absolute version of
ARM64_RELOC_POINTER_TO_GOT. But the semantics of the absolute version
are pretty weird -- it results in the value of the GOT slot being
written, rather than the address. (That means a reference to a
dynamically-bound slot will result in zeroes being written.) The
programs I've tried linking don't use this form of the relocation, so
I've dropped our partial support for it by removing the relevant
RelocAttrBits.
Reviewed By: alexshap
Differential Revision: https://reviews.llvm.org/D97031
Differential Revision: https://reviews.llvm.org/D95913
Usage: -bundle_loader <executable>
This option specifies the executable that will load the build output file being linked.
When building a bundle, users can use the --bundle_loader to specify an executable
that contains symbols referenced, but not implemented in the bundle.
This is an initial base commit for ARM64 target arch support. I don't represent that it complete or bug-free, but wish to put it out for review now that some basic things like branch target & load/store address relocs are working.
I can add more tests to this base commit, or add them in follow-up commits.
It is not entirely clear whether I use the "ARM64" (Apple) or "AArch64" (non-Apple) naming convention. Guidance is appreciated.
Differential Revision: https://reviews.llvm.org/D88629
This extends {D92539} to work even when we are loading archive
members via `-force_load`. I uncovered this issue while trying to
force-load archives containing bitcode -- we were segfaulting.
In addition to fixing the `-force_load` case, this diff also addresses
the behavior of `-ObjC` when LTO bitcode is involved -- we need to
force-load those archive members if they contain ObjC categories.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D95265
This makes our error messages more informative. But the bigger motivation is for
LTO symbol resolution, which will be in an upcoming diff. The changes in this
one are largely mechanical.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D94316