with the new pass manager, and no longer relying on analysis groups.
This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:
- FunctionAAResults is a type-erasing alias analysis results aggregation
interface to walk a single query across a range of results from
different alias analyses. Currently this is function-specific as we
always assume that aliasing queries are *within* a function.
- AAResultBase is a CRTP utility providing stub implementations of
various parts of the alias analysis result concept, notably in several
cases in terms of other more general parts of the interface. This can
be used to implement only a narrow part of the interface rather than
the entire interface. This isn't really ideal, this logic should be
hoisted into FunctionAAResults as currently it will cause
a significant amount of redundant work, but it faithfully models the
behavior of the prior infrastructure.
- All the alias analysis passes are ported to be wrapper passes for the
legacy PM and new-style analysis passes for the new PM with a shared
result object. In some cases (most notably CFL), this is an extremely
naive approach that we should revisit when we can specialize for the
new pass manager.
- BasicAA has been restructured to reflect that it is much more
fundamentally a function analysis because it uses dominator trees and
loop info that need to be constructed for each function.
All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.
The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.
This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.
Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.
One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.
Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.
Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.
Differential Revision: http://reviews.llvm.org/D12080
llvm-svn: 247167
TwoAddressInstructionPass stops after a successful commuting but 3 Addr
conversion might be good for some cases.
Consider:
int foo(int a, int b) {
return a + b;
}
Before this commit, we emit:
addl %esi, %edi
movl %edi, %eax
ret
After this commit, we try 3 Addr conversion:
leal (%rsi,%rdi), %eax
ret
Patch by Volkan Keles <vkeles@apple.com>!
Differential Revision: http://reviews.llvm.org/D10851
llvm-svn: 241206
From:
int M, total;
void foo() {
int i;
for (i = 0; i < M; i++) {
total = total + i / 2;
}
}
This is the kernel loop:
.LBB0_2: # %for.body
=>This Inner Loop Header: Depth=1
movl %edx, %esi
movl %ecx, %edx
shrl $31, %edx
addl %ecx, %edx
sarl %edx
addl %esi, %edx
incl %ecx
cmpl %eax, %ecx
jl .LBB0_2
--------------------------
The first mov insn "movl %edx, %esi" could be removed if we change "addl %esi, %edx" to "addl %edx, %esi".
The IR before TwoAddressInstructionPass is:
BB#2: derived from LLVM BB %for.body
Predecessors according to CFG: BB#1 BB#2
%vreg3<def> = COPY %vreg12<kill>; GR32:%vreg3,%vreg12
%vreg2<def> = COPY %vreg11<kill>; GR32:%vreg2,%vreg11
%vreg7<def,tied1> = SHR32ri %vreg3<tied0>, 31, %EFLAGS<imp-def,dead>; GR32:%vreg7,%vreg3
%vreg8<def,tied1> = ADD32rr %vreg3<tied0>, %vreg7<kill>, %EFLAGS<imp-def,dead>; GR32:%vreg8,%vreg3,%vreg7
%vreg9<def,tied1> = SAR32r1 %vreg8<kill,tied0>, %EFLAGS<imp-def,dead>; GR32:%vreg9,%vreg8
%vreg4<def,tied1> = ADD32rr %vreg9<kill,tied0>, %vreg2<kill>, %EFLAGS<imp-def,dead>; GR32:%vreg4,%vreg9,%vreg2
%vreg5<def,tied1> = INC64_32r %vreg3<kill,tied0>, %EFLAGS<imp-def,dead>; GR32:%vreg5,%vreg3
CMP32rr %vreg5, %vreg0, %EFLAGS<imp-def>; GR32:%vreg5,%vreg0
%vreg11<def> = COPY %vreg4; GR32:%vreg11,%vreg4
%vreg12<def> = COPY %vreg5<kill>; GR32:%vreg12,%vreg5
JL_4 <BB#2>, %EFLAGS<imp-use,kill>
Now TwoAddressInstructionPass will choose vreg9 to be tied with vreg4. However, it doesn't see that there is copy from vreg4 to vreg11 and another copy from vreg11 to vreg2 inside the loop body. To remove those copies, it is necessary to choose vreg2 to be tied with vreg4 instead of vreg9. This code pattern commonly appears when there is reduction operation in a loop.
So check for a reversed copy chain and if we encounter one then we can commute the add instruction so we can avoid a copy.
Patch by Wei Mi.
http://reviews.llvm.org/D7806
llvm-svn: 231148
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
llvm-svn: 222334
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
llvm-svn: 203865
Without this, MachineCSE is powerless to handle redundant operations with truncated source operands.
This required fixing the 2-addr pass to handle tied subregisters. It isn't clear what combinations of subregisters can legally be tied, but the simple case of truncated source operands is now safely handled:
%vreg11<def> = COPY %vreg1:sub_32bit; GR32:%vreg11 GR64:%vreg1
%vreg12<def> = COPY %vreg2:sub_32bit; GR32:%vreg12 GR64:%vreg2
%vreg13<def,tied1> = ADD32rr %vreg11<tied0>, %vreg12<kill>, %EFLAGS<imp-def>
Test case: cse-add-with-overflow.ll.
This exposed an existing bug in
PPCInstrInfo::commuteInstruction. Thanks to Rafael for the test case:
PowerPC/crash.ll.
llvm-svn: 197465
that it coalesces normal copies.
Without this, MachineCSE is powerless to handle redundant operations
with truncated source operands.
This required fixing the 2-addr pass to handle tied subregisters. It
isn't clear what combinations of subregisters can legally be tied, but
the simple case of truncated source operands is now safely handled:
%vreg11<def> = COPY %vreg1:sub_32bit; GR32:%vreg11 GR64:%vreg1
%vreg12<def> = COPY %vreg2:sub_32bit; GR32:%vreg12 GR64:%vreg2
%vreg13<def,tied1> = ADD32rr %vreg11<tied0>, %vreg12<kill>, %EFLAGS<imp-def>
llvm-svn: 197414
The Segment struct contains a single interval; multiple instances of this struct
are used to construct a live range, but the struct is not a live range by
itself.
llvm-svn: 192392
at all of the operands. Previously it was skipping over implicit operands which
cause infinite looping when the two-address pass try to reschedule a
two-address instruction below the kill of tied operand.
I'm unable to come up with a reasonably sized test case.
rdar://13747577
llvm-svn: 180906
When MachineScheduler is enabled, this functionality can be
removed. Until then, provide a way to disable it for test cases and
designing MachineScheduler heuristics.
llvm-svn: 180192
itself recursively with a new instruction that has not been finalized, in order
to determine whether to keep the instruction. On 'make check' and test-suite the
only cases where the recursive invocation made any transformations were simple
instruction commutations, so I am restricting the recursive invocation to do
only this.
The other cases wouldn't work correctly when updating LiveIntervals, since the
new instructions don't have slot indices and LiveIntervals hasn't yet been
updated. If the other transformations were actually triggering in any test case
it would be possible to support it with a lot of effort, but since they don't
it's not worth it.
llvm-svn: 175979
unless it was requested to with an optional parameter that defaults to false, so
we don't need to handle that case in TwoAddressInstructionPass.
llvm-svn: 175974
TwoAddressInstructionPass. The code in rescheduleMIBelowKill() is a bit tricky,
since multiple instructions need to be moved down, one-at-a-time, in reverse
order.
llvm-svn: 175955
pass. One of the callers of isKilled() can cope with overapproximation of kills
and the other can't, so I added a flag to indicate this.
In theory this could pessimize code slightly, but in practice most physical
register uses are kills, and most important kills of physical registers are the
only uses of that register prior to register allocation, so we can recognize
them as kills even without kill flags.
This is relevant because LiveIntervals gets rid of all kill flags.
llvm-svn: 175821
available.
With this commit there are no longer any assertion or verifier failures when
running 'make check' without LiveVariables. There are still 56 failing tests
with codegen differences and 1 unexpectedly passing test.
llvm-svn: 175719