With --no-align-segments, there is a bug that the fileoffset may not be
congruent to virtual address modulo page alignment.
This patch fixes the problem.
llvm-svn: 221890
MIPS ELF symbols might contain some additional MIPS-specific flags
in the st_other field besides visibility ones. These flags indicate
code properties like microMIPS / MIPS16 encoding, position independent
code etc. We need to transfer the flags from input objects to the
output linked file to write them into the symbol table, adjust symbols
addresses etc.
I add new attribute CodeModel to the DefinedAtom class to hold target
specific flag and to get over YAML/Native format conversion barrier.
Other architectures/targets can extend CodeModel enumeration by their
own flags.
MIPS specific part of this patch adds support for STO_MIPS_MICROMIPS
flag. This flag marks microMIPS symbols. Such symbol should:
a) Has STO_MIPS_MICROMIPS in the corresponding .symtab record.
b) Has adjusted (odd) address in the corresponding .symtab
and .dynsym records.
llvm-svn: 221864
The segment alignment for PT_LOAD segments is set to page size by default, but
if any of the sections require an alignment more than the page size, the segment
alignment property is set to the maximum alignment of the sections that are part
of the segment.
llvm-svn: 221862
The user can use the max-page-size option and set the maximum page size. Dont
check for maximum allowed values for page size, as its what the kernel is
configured with.
Fix the test as well.
llvm-svn: 221858
Each entry in the delay-import address table had a wrong alignment
requirement if 32 bit. As a result it got wrong delay-import table.
Because llvm-readobj doesn't print out that field, we don't have a
test for that. I'll submit a test that would catch this bug after
improving llvm-readobj.
llvm-svn: 221853
The GOT slots were being laid out in a random order by the GOTPass which
caused randomness in the output file.
Note: With this change lld now bootstraps on darwin. That is:
1) link lld using system linker to make lld.1
2) link lld using lld.1 to make lld.2
3) link lld using lld.2 to make lld.3
Now lld.2 and lld.3 are identical.
llvm-svn: 221831
On darwin in final linked images, the __TEXT segment covers that start of the
file. That means in memory a process can see the mach_header (and load commands)
for every loaded image in a process. There are APIs that take and return the
mach_header addresses as a way to specify a particular loaded image.
For completeness, any code can get the address of the mach_header of the image
it is in by using &__dso_handle. In addition there are mach-o type specific
symbols like __mh_execute_header.
The linker needs to supply a definition for any of these symbols if used. But
the address the symbol it resolves to is not in any section. Instead it is the
address of the start of the __TEXT segment.
I needed to make a small change to SimpleFileNode to not override
resetNextIndex() because the Driver creates a SimpleFileNode to hold the
internal/implicit files that the context/writer can create. For some reason
SimpleFileNode overrode resetNextIndex() to do nothing instead of reseting
the index (which mach-o needs if the internal file is an archive).
llvm-svn: 221822
The way lazy binding works in mach-o is that the linker generates a helper
function and has the stub (PLT) initially jump to it. The helper function
pushes an extra parameter then jumps into dyld. The extra parameter is an
offset into the lazy binding info where dyld will find the information about
which symbol to bind and way lazy binding pointer to update.
llvm-svn: 221654
The dynamic table was creating the entry DT_FINI_ARRAY{SZ} even when there was
no .fini_array section. The entries should be creating in the dynamic section
only if there are sections .init_array/.fini_array in the output.
Fixes the tests that checked for errroneous outputs.
llvm-svn: 221588
The value of _DYNAMIC should be pointing at the start of the .dynamic segment.
This was pointing to the end of the dynamic segment. Similarly the value of
_GLOBAL_OFFSET_TABLE_ was not proper too.
llvm-svn: 221587
The parsing routines in the linker script to parse strings encoded in various
formats(hexadecimal, octal, decimal, etc), is needed by the GNU driver too. This
library provides helper functions for all flavors and flavors to add helper
functions which other flavors may make use of.
llvm-svn: 221583
lld generates an ELF by adhering to the ELF spec by aligning vma/fileoffset to a
page boundary, but this becomes an issue when dealing with large pages. This
adds support so that lld generated executables adheres to the ELF spec with the
rule vma % p_align = offset % p_align.
This is supported by the flag --no-align-segments.
This could be the default in few targets like X86_64 to save space on disk.
llvm-svn: 221571
My previous fix to have FileArchive own the member MemoryBuffers was not a
complete solution for darwin because nothing owned the FileArchive object.
Fixed MachOFileNode to be like ELFFileNode and have the graph node own the
archive object.
llvm-svn: 221552
The darwin linker lets you rearrange functions and data for better locality
(less paging). You do this with the -order_file option which supplies a text
file containing one symbol per line.
Implementing this required a small change to LayoutPass to add a custom sorter
hook.
llvm-svn: 221545
When FileArchive loads a member, it instantiates a temporary MemoryBuffer
which points to the member range of the archive file. The problem is that the
object file parsers call getBufferIndentifer() on that temporary MemoryBuffer
and store that StringRef as the _path data member for that lld::File. When
FileArchive::instantiateMember() goes out of scope the MemoryBuffer is deleted
and the File::._path becomes a dangling reference.
The fix adds a vector<> to FileArchive to own the instantiated MemoryBuffers.
In addition it fixes member's path to be the standard format
(e.g. "/path/libfoo.a(foo.o)") instead of just the leaf name.
llvm-svn: 221544
Request `getPairRelocation()` function to get paired relocation type.
That allows us to look up another pairs like R_MICROMIPS_HI16/LO16
in the future.
llvm-svn: 221539
ELFLinkingContext had these two functions, which is really not needed since
the Writer uses a llvm::object template composed of Endianness, Alignment,
Is32bit/64bit. We could just use that and not duplicate functionality.
No Change In Functionality.
llvm-svn: 221523
If /subsystem option is not given, the linker needs to infer the
subsystem based on the entry point symbol. If it fails to infer
that, the linker should error out on it.
LLD was almost correct, but it would fail to infer the subsystem
if the entry point is specified with /entry. This is because the
subsystem inference was coupled with the entry point function
searching (if no entry point name is specified, the linker needs
to find the right entry name).
This patch makes the subsystem inference an independent pass to
fix the issue. Now, as long as an entry point function is defined,
LLD can infer the subsystem no matter how it resolved the entry
point.
I don't think scanning all the defined symbols is fast, although
it shouldn't be that slow. The file class there does not provide
any easy way to find an atom by name, so this is what we can do
at this moment. I'd like to revisit this later to make it more
efficient.
llvm-svn: 221499
The darwin linker has two ways to force all members of an archive to be loaded.
The -all_load option applies to all static libraries. The -force_load takes
a path to a library and just that library's members are force loaded.
llvm-svn: 221477
1. The path checks ELF header flags to prevent linking of incompatible files.
For example we do not allow to link files with different ABI, -mnan
flags, some combination of target CPU etc.
2. The patch merge ELF header flags from input object files to put their
combination to the generated file. For example, if some input files
have EF_MIPS_NOREORDER flag we need to put this flag to the output
file header.
I use the `parseFile()` (not `canParse()`) method because in case of
recognition of incorrect input flags combination we should show detailed
error message and stop the linking process and should not try to use
another `Reader`.
llvm-svn: 221439
The darwin linker does not process dwarf debug info. Instead it produces a
"debug map" in the output file which points back to the original .o files for
anything that wants debug info (e.g. debugger).
The -S option means "don't add a debug map". lld for mach-o currently does
not generate the debug map, so there is nothing to do when this option is used.
But we need to process the option to get existing projects building.
llvm-svn: 221432
Darwin uses two-level-namespace lookup for symbols which means the static
linker records where each symbol must be found at runtime. Thus defining a
symbol in a dylib loaded earlier will not effect where symbols needed by
later dylibs will be found. Instead overriding is done through a section
of type S_INTERPOSING which contains tuples of <interposer, interposee>.
llvm-svn: 221421
SECREL relocation's value is the offset to the beginning of the section.
Because of the off-by-one error, if a SECREL relocation target is at the
beginning of a section, it got wrong value.
Added a test that would have caught this.
llvm-svn: 221420
The local variable `cfi` became dead in r220730 when it's use was
obviated; it was replaced with a call to read32.
No functionality change intended.
llvm-svn: 221412