Replace the `ident_t` handling in Clang with the methods offered by the
OMPIRBuilder. This cuts down on the clang code as well as the
differences between the two, making further transitions easier. Tests
have changed but there should not be a real functional change. The most
interesting difference is probably that we stop generating local ident_t
allocations for now and just use globals. Given that this happens only
with debug info, the location part of the `ident_t` is probably bigger
than the test anyway. As the location part is already a global, we can
avoid the allocation, memcpy, and store in favor of a constant global
that is slightly bigger. This can be revisited if there are
complications.
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D80735
Summary:
The OpenMP loops are normalized and transformed into the loops from 0 to
max number of iterations. In some cases, original scheme may lead to
overflow during calculation of number of iterations. If it is unknown,
if we can end up with overflow or not (the bounds are not constant and
we cannot define if there is an overflow), cast original type to the
unsigned.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, sstefan1, openmp-commits, cfe-commits, caomhin
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D81881
Summary:
Patch forces codegen to use the new runtime functions for task reductions where
the issue with passing the address of the original variables to the UDR
initializers is fixed. Also, this patch is required for upcoming
support of task modifier inreduction clause.
Reviewers: jdoerfert
Subscribers: yaxunl, guansong, cfe-commits, caomhin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D78733
Avoid copying of the orignal variable if it is going to be marked as
firstprivate in task regions. For taskloops, still need to copy the
non-trvially copyable variables to correctly construct them upon task
creation.
For consistency with normal instructions and clarity when reading IR,
it's best to print the %0, %1, ... names of function arguments in
definitions.
Also modifies the parser to accept IR in that form for obvious reasons.
llvm-svn: 367755
performance.
Internally generated functions must be marked as always_inlines in most
cases. Patch marks some extra reduction function + outlined parallel
functions as always_inline for better performance, but only if the
optimization is requested.
llvm-svn: 361269
If the loop counter is not declared in the context of the loop and it is
private, such loop counters should not be captured in the outlined
regions.
llvm-svn: 345505
Summary:
For the following code:
```
int i;
#pragma omp taskloop
for (i = 0; i < 100; ++i)
{}
#pragma omp taskloop nogroup
for (i = 0; i < 100; ++i)
{}
```
Clang emits the following LLVM IR:
```
...
call void @__kmpc_taskgroup(%struct.ident_t* @0, i32 %0)
%2 = call i8* @__kmpc_omp_task_alloc(%struct.ident_t* @0, i32 %0, i32 1, i64 80, i64 8, i32 (i32, i8*)* bitcast (i32 (i32, %struct.kmp_task_t_with_privates*)* @.omp_task_entry. to i32 (i32, i8*)*))
...
call void @__kmpc_taskloop(%struct.ident_t* @0, i32 %0, i8* %2, i32 1, i64* %8, i64* %9, i64 %13, i32 0, i32 0, i64 0, i8* null)
call void @__kmpc_end_taskgroup(%struct.ident_t* @0, i32 %0)
...
%15 = call i8* @__kmpc_omp_task_alloc(%struct.ident_t* @0, i32 %0, i32 1, i64 80, i64 8, i32 (i32, i8*)* bitcast (i32 (i32, %struct.kmp_task_t_with_privates.1*)* @.omp_task_entry..2 to i32 (i32, i8*)*))
...
call void @__kmpc_taskloop(%struct.ident_t* @0, i32 %0, i8* %15, i32 1, i64* %21, i64* %22, i64 %26, i32 0, i32 0, i64 0, i8* null)
```
The first set of instructions corresponds to the first taskloop construct. It is important to note that the implicit taskgroup region associated with the taskloop construct has been materialized in our IR: the `__kmpc_taskloop` occurs inside a taskgroup region. Note also that this taskgroup region does not exist in our second taskloop because we are using the `nogroup` clause.
The issue here is the 4th argument of the kmpc_taskloop call, starting from the end, is always a zero. Checking the LLVM OpenMP RT implementation, we see that this argument corresponds to the nogroup parameter:
```
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
int sched, kmp_uint64 grainsize, void *task_dup);
```
So basically we always tell to the RT to do another taskgroup region. For the first taskloop, this means that we create two taskgroup regions. For the second example, it means that despite the fact we had a nogroup clause we are going to have a taskgroup region, so we unnecessary wait until all descendant tasks have been executed.
Reviewers: ABataev
Reviewed By: ABataev
Subscribers: rogfer01, cfe-commits
Differential Revision: https://reviews.llvm.org/D53636
llvm-svn: 345180
Fixed emission of the __kmpc_global_thread_num() so that it is not
messed up with alloca instructions anymore. Plus, fixes emission of the
__kmpc_global_thread_num() functions in the target outlined regions so
that they are not called before runtime is initialized.
llvm-svn: 343856
If initialization of the task reductions requires pointer to original
variable, which is stored in the threadprivate storage, we used the
address of this pointer instead.
llvm-svn: 327136
using.
We may emit the code in wrong order because of incorrect implementation
of the runtime functions for task reductions. Threadprivate storages may
be initialized after real initialization of the reduction items. Patch
fixes this problem.
llvm-svn: 327008
Summary:
Upstream LLVM is changing the the prototypes of the @llvm.memcpy/memmove/memset
intrinsics. This change updates the Clang tests for this change.
The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument
which is required to be a constant integer. It represents the alignment of the
dest (and source), and so must be the minimum of the actual alignment of the
two.
This change removes the alignment argument in favour of placing the alignment
attribute on the source and destination pointers of the memory intrinsic call.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false)
will now read
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false)
At this time the source and destination alignments must be the same (Step 1).
Step 2 of the change, to be landed shortly, will relax that contraint and allow
the source and destination to have different alignments.
llvm-svn: 322964
only.
Added support for -fopenmp-simd option that allows compilation of
simd-based constructs without emission of OpenMP runtime calls.
llvm-svn: 321560
Though it is incorrect from point of view of OpenMP standard to have
dependent iteration space in OpenMP loops, compiler should not crash.
Patch fixes this problem.
llvm-svn: 319700