This patch fixes various issues with our prior `declare target` handling
and extends it to support `omp begin declare target` as well.
This started with PR49649 in mind, trying to provide a way for users to
avoid the "ref" global use introduced for globals with internal linkage.
From there it went down the rabbit hole, e.g., all variables, even
`nohost` ones, were emitted into the device code so it was impossible to
determine if "ref" was needed late in the game (based on the name only).
To make it really useful, `begin declare target` was needed as it can
carry the `device_type`. Not emitting variables eagerly had a ripple
effect. Finally, the precedence of the (explicit) declare target list
items needed to be taken into account, that meant we cannot just look
for any declare target attribute to make a decision. This caused the
handling of functions to require fixup as well.
I tried to clean up things while I was at it, e.g., we should not "parse
declarations and defintions" as part of OpenMP parsing, this will always
break at some point. Instead, we keep track what region we are in and
act on definitions and declarations instead, this is what we do for
declare variant and other begin/end directives already.
Highlights:
- new diagnosis for restrictions specificed in the standard,
- delayed emission of globals not mentioned in an explicit
list of a declare target,
- omission of `nohost` globals on the host and `host` globals on the
device,
- no explicit parsing of declarations in-between `omp [begin] declare
variant` and the corresponding end anymore, regular parsing instead,
- precedence for explicit mentions in `declare target` lists over
implicit mentions in the declaration-definition-seq, and
- `omp allocate` declarations will now replace an earlier emitted
global, if necessary.
---
Notes:
The patch is larger than I hoped but it turns out that most changes do
on their own lead to "inconsistent states", which seem less desirable
overall.
After working through this I feel the standard should remove the
explicit declare target forms as the delayed emission is horrible.
That said, while we delay things anyway, it seems to me we check too
often for the current status even though that is often not sufficient to
act upon. There seems to be a lot of duplication that can probably be
trimmed down. Eagerly emitting some things seems pretty weak as an
argument to keep so much logic around.
---
Reviewed By: ABataev
Differential Revision: https://reviews.llvm.org/D101030
Initial support for using the OpenMPIRBuilder by clang to generate loops using the OpenMPIRBuilder. This initial support is intentionally limited to:
* Only the worksharing-loop directive.
* Recognizes only the nowait clause.
* No loop nests with more than one loop.
* Untested with templates, exceptions.
* Semantic checking left to the existing infrastructure.
This patch introduces a new AST node, OMPCanonicalLoop, which becomes parent of any loop that has to adheres to the restrictions as specified by the OpenMP standard. These restrictions allow OMPCanonicalLoop to provide the following additional information that depends on base language semantics:
* The distance function: How many loop iterations there will be before entering the loop nest.
* The loop variable function: Conversion from a logical iteration number to the loop variable.
These allow the OpenMPIRBuilder to act solely using logical iteration numbers without needing to be concerned with iterator semantics between calling the distance function and determining what the value of the loop variable ought to be. Any OpenMP logical should be done by the OpenMPIRBuilder such that it can be reused MLIR OpenMP dialect and thus by flang.
The distance and loop variable function are implemented using lambdas (or more exactly: CapturedStmt because lambda implementation is more interviewed with the parser). It is up to the OpenMPIRBuilder how they are called which depends on what is done with the loop. By default, these are emitted as outlined functions but we might think about emitting them inline as the OpenMPRuntime does.
For compatibility with the current OpenMP implementation, even though not necessary for the OpenMPIRBuilder, OMPCanonicalLoop can still be nested within OMPLoopDirectives' CapturedStmt. Although OMPCanonicalLoop's are not currently generated when the OpenMPIRBuilder is not enabled, these can just be skipped when not using the OpenMPIRBuilder in case we don't want to make the AST dependent on the EnableOMPBuilder setting.
Loop nests with more than one loop require support by the OpenMPIRBuilder (D93268). A simple implementation of non-rectangular loop nests would add another lambda function that returns whether a loop iteration of the rectangular overapproximation is also within its non-rectangular subset.
Reviewed By: jdenny
Differential Revision: https://reviews.llvm.org/D94973
When we use the OpenMPIRBuilder for the parallel region we need to also
use it to get the thread ID (among other things) in the body. This is
because CGOpenMPRuntime::getThreadID() and
CGOpenMPRuntime::emitUpdateLocation implicitly assumes that if they are
called from within a parallel region there is a certain structure to the
code and certain members of the OMPRegionInfo are initialized. It might
make sense to initialize them even if we use the OpenMPIRBuilder but we
would preferably get rid of such state instead.
Bug reported by Anchu Rajendran Sudhakumari.
Depends on D82470.
Reviewed By: anchu-rajendran
Differential Revision: https://reviews.llvm.org/D82822