We need a frame pointer if there is a push/pop sequence after the
prologue in order to unwind the stack. Scanning the instructions to
figure out if this happened made hasFP not constant-time which is a
violation of expectations. Let's compute this up-front and reuse that
computation when we need it.
llvm-svn: 256730
This adds support for the MCU psABI in a way different from r251223 and r251224,
basically reverting most of these two patches. The problem with the approach
taken in r251223/4 is that it only handled libcalls that originated from the backend.
However, the mid-end also inserts quite a few libcalls and assumes these use the
platform's default calling convention.
The previous patch tried to insert inregs when necessary both in the FE and,
somewhat hackily, in the CG. Instead, we now define a new default calling convention
for the MCU, which doesn't use inreg marking at all, similarly to what x86-64 does.
Differential Revision: http://reviews.llvm.org/D15054
llvm-svn: 256494
Fix TRUNCATE lowering vector to vector i1, use LSB and not MSB.
Implement VPMOVB/W/D/Q2M intrinsic.
Differential Revision: http://reviews.llvm.org/D15675
llvm-svn: 256470
Summary:
The CLR's personality routine passes these in rdx/edx, not rax/eax.
Make getExceptionPointerRegister a virtual method parameterized by
personality function to allow making this distinction.
Similarly make getExceptionSelectorRegister a virtual method parameterized
by personality function, for symmetry.
Reviewers: pgavlin, majnemer, rnk
Subscribers: jyknight, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D14344
llvm-svn: 252383
This adds the EH_RESTORE x86 pseudo instr, which is responsible for
restoring the stack pointers: EBP and ESP, and ESI if stack realignment
is involved. We only need this on 32-bit x86, because on x64 the runtime
restores CSRs for us.
Previously we had to keep the CATCHRET instruction around during SEH so
that we could convince X86FrameLowering to restore our frame pointers.
Now we can split these instructions earlier.
This was confusing, because we had a return instruction which wasn't
really a return and was ultimately going to be removed by
X86FrameLowering. This change also simplifies X86FrameLowering, which
really shouldn't be building new MBBs.
No observable functional change currently, but with the new register
mask stuff in D14407, CATCHRET will become a register allocator barrier,
and our existing tests rely on us having reasonable register allocation
around SEH.
llvm-svn: 252266
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
The previous iteration of this change was reverted in r250461. This
version leaves the generic, compiler-rt based implementation in
SafeStack.cpp instead of moving it to TargetLoweringBase in order to
allow testing without a TargetMachine.
llvm-svn: 251324
When using the MCU psABI, compiler-generated library calls should pass
some parameters in-register. However, since inreg marking for x86 is currently
done by the front end, it will not be applied to backend-generated calls.
This is a workaround for PR3997, which describes a similar issue for -mregparm.
Differential Revision: http://reviews.llvm.org/D13977
llvm-svn: 251223
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
llvm-svn: 250456
The XOP vector integer comparisons can deal with all signed/unsigned comparison cases directly and can be easily commuted as well (D7646).
llvm-svn: 249976
The XOP shifts just have logical/arithmetic versions and the left/right shifts are controlled by whether the value is positive/negative. Because of this I've added new X86ISD nodes instead of trying to force them to use the existing shift nodes.
Additionally Excavator cores (bdver4) support XOP and AVX2 - meaning that it should use the AVX2 shifts when it can and fall back to XOP in other cases.
Differential Revision: http://reviews.llvm.org/D8690
llvm-svn: 248878
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
llvm-svn: 248405
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
llvm-svn: 248357
This makes catchret look more like a branch, and less like a weird use
of BlockAddress. It also lets us get away from
llvm.x86.seh.restoreframe, which relies on the old parentfpoffset label
arithmetic.
llvm-svn: 247936
We used to have this magic "hasLoadLinkedStoreConditional()" callback,
which really meant two things:
- expand cmpxchg (to ll/sc).
- expand atomic loads using ll/sc (rather than cmpxchg).
Remove it, and, instead, introduce explicit callbacks:
- bool shouldExpandAtomicCmpXchgInIR(inst)
- AtomicExpansionKind shouldExpandAtomicLoadInIR(inst)
Differential Revision: http://reviews.llvm.org/D12557
llvm-svn: 247429
All of the complexity is in cleanupret, and it mostly follows the same
codepaths as catchret, except it doesn't take a return value in RAX.
This small example now compiles and executes successfully on win32:
extern "C" int printf(const char *, ...) noexcept;
struct Dtor {
~Dtor() { printf("~Dtor\n"); }
};
void has_cleanup() {
Dtor o;
throw 42;
}
int main() {
try {
has_cleanup();
} catch (int) {
printf("caught it\n");
}
}
Don't try to put the cleanup in the same function as the catch, or Bad
Things will happen.
llvm-svn: 247219
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
This fixes two issues in x86 fptoui lowering.
1) Makes conversions from f80 go through the right path on AVX-512.
2) Implements an inline sequence for fptoui i64 instead of a library
call. This improves performance by 6X on SSE3+ and 3X otherwise.
Incidentally, it also removes the use of ftol2 for fptoui, which was
wrong to begin with, as ftol2 converts to a signed i64, producing
wrong results for values >= 2^63.
Patch by: mitch.l.bodart@intel.com
Differential Revision: http://reviews.llvm.org/D11316
llvm-svn: 245924
There are some cases where the mul sequence is smaller, but for the most part,
using a div is preferable. This does not apply to vectors, since x86 doesn't
have vector idiv, and a vector mul/shifts sequence ought to be smaller than a
scalarized division.
Differential Revision: http://reviews.llvm.org/D12082
llvm-svn: 245431
Summary: PR24191 finds that the expected memory-register operations aren't generated when relaxed { load ; modify ; store } is used. This is similar to PR17281 which was addressed in D4796, but only for memory-immediate operations (and for memory orderings up to acquire and release). This patch also handles some floating-point operations.
Reviewers: reames, kcc, dvyukov, nadav, morisset, chandlerc, t.p.northover, pete
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11382
llvm-svn: 244128
This fix was suggested as part of D11345 and is part of fixing PR24141.
With this change, we can avoid walking the uses of a divisor node if the target
doesn't want the combineRepeatedFPDivisors transform in the first place.
There is no NFC-intended other than that.
Differential Revision: http://reviews.llvm.org/D11531
llvm-svn: 243498
This commit broke the build. Numerous build bots broken, and it was
blocking my progress so reverting.
It should be trivial to reproduce -- enable the BPF backend and it
should fail when running llvm-tblgen.
llvm-svn: 242992
In this patch I have only encoding. Intrinsics and DAG lowering will be in the next patch.
I temporary removed the old intrinsics test (just to split this patch).
Half types are not covered here.
Differential Revision: http://reviews.llvm.org/D11134
llvm-svn: 242023
This patch allows the read_register and write_register intrinsics to
read/write the RBP/EBP registers on X86 iff the targeted register is
the frame pointer for the containing function.
Differential Revision: http://reviews.llvm.org/D10977
llvm-svn: 241827
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11040
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241778
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11038
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241777
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
This patch adds support for v8i16 and v16i8 shuffle lowering using the immediate versions of the SSE4A EXTRQ and INSERTQ instructions. Although rather limited (they can only act on the lower 64-bits of the source vectors, leave the upper 64-bits of the result vector undefined and don't have VEX encoded variants), the instructions are still useful for the zero extension of any lane (EXTRQ) or inserting a lane into another vector (INSERTQ). Testing demonstrated that it wasn't typically worth it to use these instructions for v2i64 or v4i32 vector shuffles although they are capable of it.
As well as adding specific pattern matching for the shuffles, the patch uses EXTRQ for zero extension cases where SSE41 isn't available and its more efficient than the SSE2 'unpack' default approach. It also adds shuffle decode support for the EXTRQ / INSERTQ cases when the instructions are handling full byte-sized extractions / insertions.
From this foundation, future patches will be able to make use of the instructions for situations that use their ability to extract/insert at the bit level.
Differential Revision: http://reviews.llvm.org/D10146
llvm-svn: 241508
With the completion of D9746 there is now a common implementation of integer signed/unsigned min/max nodes, removing the need for the equivalent X86 specific implementations.
This patch removes the old X86ISD nodes, legalizes the relevant SSE2/SSE41/AVX2/AVX512 instructions for the ISD versions and converts the small amount of existing X86 code.
Differential Revision: http://reviews.llvm.org/D10947
llvm-svn: 241506
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This patch enables support for the conversion of v2i32 to v2f64 to use the CVTDQ2PD xmm instruction and stay on the SSE unit instead of scalarizing, sign extending to i64 and using CVTSI2SDQ scalar conversions.
Differential Revision: http://reviews.llvm.org/D10433
llvm-svn: 239855
AVX-512: Implemented GETEXP instruction for KNL and SKX
Added rounding mode modifier for SQRTPS/PD
Added tests for encoding and intrinsics.
CR:
http://reviews.llvm.org/D9991
llvm-svn: 238923
This patch removes the old X86ISD::FSRL op - which allowed float vectors to use the byte right shift operations (causing a domain switch....).
Since the refactoring of the shuffle lowering code this no longer has any use.
Differential Revision: http://reviews.llvm.org/D10169
llvm-svn: 238906
This is important because of different addressing modes
depending on the address space for GPU targets.
This only adds the argument, and does not update
any of the uses to provide the correct address space.
llvm-svn: 238723
in-register LUT technique.
Summary:
A description of this technique can be found here:
http://wm.ite.pl/articles/sse-popcount.html
The core of the idea is to use an in-register lookup table and the
PSHUFB instruction to compute the population count for the low and high
nibbles of each byte, and then to use horizontal sums to aggregate these
into vector population counts with wider element types.
On x86 there is an instruction that will directly compute the horizontal
sum for the low 8 and high 8 bytes, giving vNi64 popcount very easily.
Various tricks are used to get vNi32 and vNi16 from the vNi8 that the
LUT computes.
The base implemantion of this, and most of the work, was done by Bruno
in a follow up to D6531. See Bruno's detailed post there for lots of
timing information about these changes.
I have extended Bruno's patch in the following ways:
0) I committed the new tests with baseline sequences so this shows
a diff, and regenerated the tests using the update scripts.
1) Bruno had noticed and mentioned in IRC a redundant mask that
I removed.
2) I introduced a particular optimization for the i32 vector cases where
we use PSHL + PSADBW to compute the the low i32 popcounts, and PSHUFD
+ PSADBW to compute doubled high i32 popcounts. This takes advantage
of the fact that to line up the high i32 popcounts we have to shift
them anyways, and we can shift them by one fewer bit to effectively
divide the count by two. While the PSHUFD based horizontal add is no
faster, it doesn't require registers or load traffic the way a mask
would, and provides more ILP as it happens on different ports with
high throughput.
3) I did some code cleanups throughout to simplify the implementation
logic.
4) I refactored it to continue to use the parallel bitmath lowering when
SSSE3 is not available to preserve the performance of that version on
SSE2 targets where it is still much better than scalarizing as we'll
still do a bitmath implementation of popcount even in scalar code
there.
With #1 and #2 above, I analyzed the result in IACA for sandybridge,
ivybridge, and haswell. In every case I measured, the throughput is the
same or better using the LUT lowering, even v2i64 and v4i64, and even
compared with using the native popcnt instruction! The latency of the
LUT lowering is often higher than the latency of the scalarized popcnt
instruction sequence, but I think those latency measurements are deeply
misleading. Keeping the operation fully in the vector unit and having
many chances for increased throughput seems much more likely to win.
With this, we can lower every integer vector popcount implementation
using the LUT strategy if we have SSSE3 or better (and thus have
PSHUFB). I've updated the operation lowering to reflect this. This also
fixes an issue where we were scalarizing horribly some AVX lowerings.
Finally, there are some remaining cleanups. There is duplication between
the two techniques in how they perform the horizontal sum once the byte
population count is computed. I'm going to factor and merge those two in
a separate follow-up commit.
Differential Revision: http://reviews.llvm.org/D10084
llvm-svn: 238636
Summary:
But still handle them the same way since I don't know how they differ on
this target.
Of these, 'o' and 'v' are not tested but were already implemented.
I'm not sure why 'i' is required for X86 since it's supposed to be an
immediate constraint rather than a memory constraint. A test asserts
without it so I've included it for now.
No functional change intended.
Reviewers: nadav
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8254
llvm-svn: 237517
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
llvm-svn: 237079
This changes the shape of the statepoint intrinsic from:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)
to:
@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)
This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.
In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.
Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.
Differential Revision: http://reviews.llvm.org/D9501
llvm-svn: 236888
Added intrinsics for the instructions. CC parameter of the intrinsics was changed from i8 to i32 according to the spec.
By Igor Breger (igor.breger@intel.com)
llvm-svn: 236714
Set the transform bar at 2 divisions because the fastest current
x86 FP divider circuit is in SandyBridge / Haswell at 10 cycle
latency (best case) relative to a 5 cycle multiplier.
So that's the worst case for this transform (no latency win),
but multiplies are obviously pipelined while divisions are not,
so there's still a big throughput win which we would expect to
show up in typical FP code.
These are the sequences I'm comparing:
divss %xmm2, %xmm0
mulss %xmm1, %xmm0
divss %xmm2, %xmm0
Becomes:
movss LCPI0_0(%rip), %xmm3 ## xmm3 = mem[0],zero,zero,zero
divss %xmm2, %xmm3
mulss %xmm3, %xmm0
mulss %xmm1, %xmm0
mulss %xmm3, %xmm0
[Ignore for the moment that we don't optimize the chain of 3 multiplies
into 2 independent fmuls followed by 1 dependent fmul...this is the DAG
version of: https://llvm.org/bugs/show_bug.cgi?id=21768 ...if we fix that,
then the transform becomes even more profitable on all targets.]
Differential Revision: http://reviews.llvm.org/D8941
llvm-svn: 235012
Summary:
This is instead of doing this in target independent code and is the last
non-functional change before targets begin to distinguish between
different memory constraints when selecting code for the ISD::INLINEASM
node.
Next, each target will individually move away from the idea that all
memory constraints behave like 'm'.
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8173
llvm-svn: 232373
Summary:
In PNaCl, most atomic instructions have their own @llvm.nacl.atomic.* function, each one, with a few exceptions, represents a consistent behaviour across all NaCl-supported targets. Unfortunately, the atomic RMW operations nand, [u]min, and [u]max aren't directly represented by any such @llvm.nacl.atomic.* function. This patch refines shouldExpandAtomicRMWInIR in TargetLowering so that a future `Le32TargetLowering` class can selectively inform the caller how the target desires the atomic RMW instruction to be expanded (ie via load-linked/store-conditional for ARM/AArch64, via cmpxchg for X86/others?, or not at all for Mips) if at all.
This does not represent a behavioural change and as such no tests were added.
Patch by: Richard Diamond.
Reviewers: jfb
Reviewed By: jfb
Subscribers: jfb, aemerson, t.p.northover, llvm-commits
Differential Revision: http://reviews.llvm.org/D7713
llvm-svn: 231250
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
llvm-svn: 230583
The combine that forms extloads used to be disabled on vector types,
because "None of the supported targets knows how to perform load and
sign extend on vectors in one instruction."
That's not entirely true, since at least SSE4.1 X86 knows how to do
those sextloads/zextloads (with PMOVS/ZX).
But there are several aspects to getting this right.
First, vector extloads are controlled by a profitability callback.
For instance, on ARM, several instructions have folded extload forms,
so it's not always beneficial to create an extload node (and trying to
match extloads is a whole 'nother can of worms).
The interesting optimization enables folding of s/zextloads to illegal
(splittable) vector types, expanding them into smaller legal extloads.
It's not ideal (it introduces some legalization-like behavior in the
combine) but it's better than the obvious alternative: form illegal
extloads, and later try to split them up. If you do that, you might
generate extloads that can't be split up, but have a valid ext+load
expansion. At vector-op legalization time, it's too late to generate
this kind of code, so you end up forced to scalarize. It's better to
just avoid creating egregiously illegal nodes.
This optimization is enabled unconditionally on X86.
Note that the splitting combine is happy with "custom" extloads. As
is, this bypasses the actual custom lowering, and just unrolls the
extload. But from what I've seen, this is still much better than the
current custom lowering, which does some kind of unrolling at the end
anyway (see for instance load_sext_4i8_to_4i64 on SSE2, and the added
FIXME).
Also note that the existing combine that forms extloads is now also
enabled on legal vectors. This doesn't have a big effect on X86
(because sext+load is usually combined to sext_inreg+aextload).
On ARM it fires on some rare occasions; that's for a separate commit.
Differential Revision: http://reviews.llvm.org/D6904
llvm-svn: 228325
Implement a BITCAST dag combine to transform i32->mmx conversion patterns
into a X86 specific node (MMX_MOVW2D) and guarantee that moves between
i32 and x86mmx are better handled, i.e., don't use store-load to do the
conversion..
llvm-svn: 228293
By Asaf Badouh and Elena Demikhovsky
Added special nodes for rounding: FMADD_RND, FMSUB_RND..
It will prevent merge between nodes with rounding and other standard nodes.
llvm-svn: 227303
"ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
relocation target a movq or addq instruction.
Prohibit the truncation of such loads to movl or addl.
This fixes PR22083.
Differential Revision: http://reviews.llvm.org/D6839
llvm-svn: 225250
If the control flow is modelling an if-statement where the only instruction in
the 'then' basic block (excluding the terminator) is a call to cttz/ctlz,
CodeGenPrepare can try to speculate the cttz/ctlz call and simplify the control
flow graph.
Example:
\code
entry:
%cmp = icmp eq i64 %val, 0
br i1 %cmp, label %end.bb, label %then.bb
then.bb:
%c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true)
br label %end.bb
end.bb:
%cond = phi i64 [ %c, %then.bb ], [ 64, %entry]
\code
In this example, basic block %then.bb is taken if value %val is not zero.
Also, the phi node in %end.bb would propagate the size-of in bits of %val
only if %val is equal to zero.
With this patch, CodeGenPrepare will try to hoist the call to cttz from %then.bb
into basic block %entry only if cttz is cheap to speculate for the target.
Added two new hooks in TargetLowering.h to let targets customize the behavior
(i.e. decide whether it is cheap or not to speculate calls to cttz/ctlz). The
two new methods are 'isCheapToSpeculateCtlz' and 'isCheapToSpeculateCttz'.
By default, both methods return 'false'.
On X86, method 'isCheapToSpeculateCtlz' returns true only if the target has
LZCNT. Method 'isCheapToSpeculateCttz' only returns true if the target has BMI.
Differential Revision: http://reviews.llvm.org/D6728
llvm-svn: 224899
This handles the case of a BUILD_VECTOR being constructed out of elements extracted from a vector twice the size of the result vector. Previously this was always scalarized. Now, we try to construct a shuffle node that feeds on extract_subvectors.
This fixes PR15872 and provides a partial fix for PR21711.
Differential Revision: http://reviews.llvm.org/D6678
llvm-svn: 224429
This is a first step for generating SSE rcp instructions for reciprocal
calcs when fast-math allows it. This is very similar to the rsqrt optimization
enabled in D5658 ( http://reviews.llvm.org/rL220570 ).
For now, be conservative and only enable this for AMD btver2 where performance
improves significantly both in terms of latency and throughput.
We may never enable this codegen for Intel Core* chips because the divider circuits
are just too fast. On SandyBridge, divss can be as fast as 10 cycles versus the 21
cycle critical path for the rcp + mul + sub + mul + add estimate.
Follow-on patches may allow configuration of the number of Newton-Raphson refinement
steps, add AVX512 support, and enable the optimization for more chips.
More background here: http://llvm.org/bugs/show_bug.cgi?id=21385
Differential Revision: http://reviews.llvm.org/D6175
llvm-svn: 221706
condition to match a blend.
This prevents optimizations that work on VSELECT to perform invalid
transformations. Indeed, the optimized condition does not match the vector
boolean content that is expected and bad things may happen.
This patch yields the exact same code on the whole test-suite + specs (-O3 and
-O3 -march=core-avx2), it improves one test case (vector-blend.ll) and fixes a
bug reduced in vselect-avx.ll.
<rdar://problem/18819506>
llvm-svn: 221429
For 8-bit divrems where the remainder is used, we used to generate:
divb %sil
shrw $8, %ax
movzbl %al, %eax
That was to avoid an H-reg access, which is problematic mainly because
it isn't possible in REX-prefixed instructions.
This patch optimizes that to:
divb %sil
movzbl %ah, %eax
To do that, we explicitly extend AH, and extract the L-subreg in the
resulting register. The extension is done using the NOREX variants of
MOVZX. To support signed operations, MOVSX_NOREX is also added.
Further, this introduces a new SDNode type, [us]divrem_ext_hreg, which is
then lowered to a sequence containing a single zext (rather than 2).
Differential Revision: http://reviews.llvm.org/D6064
llvm-svn: 221176
This is a first step for generating SSE rsqrt instructions for
reciprocal square root calcs when fast-math is allowed.
For now, be conservative and only enable this for AMD btver2
where performance improves significantly - for example, 29%
on llvm/projects/test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c
(if we convert the data type to single-precision float).
This patch adds a two constant version of the Newton-Raphson
refinement algorithm to DAGCombiner that can be selected by any target
via a parameter returned by getRsqrtEstimate()..
See PR20900 for more details:
http://llvm.org/bugs/show_bug.cgi?id=20900
Differential Revision: http://reviews.llvm.org/D5658
llvm-svn: 220570
Currently, @llvm.smul.with.overflow.i8 expands to 9 instructions, where
3 are really needed.
This adds X86ISD::UMUL8/SMUL8 SD nodes, and custom lowers them to
MUL8/IMUL8 + SETO.
i8 is a special case because there is no two/three operand variants of
(I)MUL8, so the first operand and return value need to go in AL/AX.
Also, we can't write patterns for these instructions: TableGen refuses
patterns where output operands don't match SDNode results. In this case,
instructions where the output operand is an implicitly defined register.
A related special case (and FIXME) exists for MUL8 (X86InstrArith.td):
// FIXME: Used for 8-bit mul, ignore result upper 8 bits.
// This probably ought to be moved to a def : Pat<> if the
// syntax can be accepted.
[(set AL, (mul AL, GR8:$src)), (implicit EFLAGS)]
Ideally, these go away with UMUL8, but we still need to improve TableGen
support of implicit operands in patterns.
Before this change:
movsbl %sil, %eax
movsbl %dil, %ecx
imull %eax, %ecx
movb %cl, %al
sarb $7, %al
movzbl %al, %eax
movzbl %ch, %esi
cmpl %eax, %esi
setne %al
After:
movb %dil, %al
imulb %sil
seto %al
Also, remove a made-redundant testcase for PR19858, and enable more FastISel
ALU-overflow tests for SelectionDAG too.
Differential Revision: http://reviews.llvm.org/D5809
llvm-svn: 220516
Summary:
I originally tried doing this specifically for X86 in the backend in D5091,
but it was rather brittle and generally running too late to be general.
Furthermore, other targets may want to implement similar optimizations.
So I reimplemented it at the IR-level, fitting it into AtomicExpandPass
as it interacts with that pass (which could not be cleanly done before
at the backend level).
This optimization relies on a new target hook, which is only used by X86
for now, as the correctness of the optimization on other targets remains
an open question. If it is found correct on other targets, it should be
trivial to enable for them.
Details of the optimization are discussed in D5091.
Test Plan: make check-all + a new test
Reviewers: jfb
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5422
llvm-svn: 218455
for this now.
Should prevent folks from running afoul of this and not knowing why
their code won't instruction select the way I just did...
llvm-svn: 218436
trick that I missed.
VPERMILPS has a non-immediate memory operand mode that allows it to do
asymetric shuffles in the two 128-bit lanes. Use this rather than two
shuffles and a blend.
However, it turns out the variable shuffle path to VPERMILPS (and
VPERMILPD, although that one offers no functional differenc from the
immediate operand other than variability) wasn't even plumbed through
codegen. Do such plumbing so that we can reasonably emit
a variable-masked VPERMILP instruction. Also plumb basic comment parsing
and printing through so that the tests are reasonable.
There are still a few tests which don't show the shuffle pattern. These
are tests with undef lanes. I'll teach the shuffle decoding and printing
to handle undef mask entries in a follow-up. I've looked at the masks
and they seem reasonable.
llvm-svn: 218300
td pattern). Currently we only model the immediate operand variation of
VPERMILPS and VPERMILPD, we should make that clear in the pseudos used.
Will be adding support for the variable mask variant in my next commit.
llvm-svn: 218282
Summary:
Update segmented-stacks*.ll tests with x32 target case and make
corresponding changes to make them pass.
Test Plan: tests updated with x32 target
Reviewers: nadav, rafael, dschuff
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D5245
llvm-svn: 218247
This required a new hook called hasLoadLinkedStoreConditional to know whether
to expand atomics to LL/SC (ARM, AArch64, in a future patch Power) or to
CmpXchg (X86).
Apart from that, the new code in AtomicExpandPass is mostly moved from
X86AtomicExpandPass. The main result of this patch is to get rid of that
pass, which had lots of code duplicated with AtomicExpandPass.
llvm-svn: 217928
introducing a synthetic X86 ISD node representing this generic
operation.
The relevant patterns for mapping these nodes into the concrete
instructions are also added, and a gnarly bit of C++ code in the
target-specific DAG combiner is replaced with simple code emitting this
primitive.
The next step is to generically combine blends of adds and subs into
this node so that we can drop the reliance on an SSE4.1 ISD node
(BLENDI) when matching an SSE3 feature (ADDSUB).
llvm-svn: 217819
No functional change. This will be used by the new FMA intrinsic lowering
code.
We can probably add NO_EXC here as well, I am just not too familiar with this
part of AVX512 yet. We can add that later.
llvm-svn: 215662
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
They have different semantics (valign is interlane while palingr is intralane)
and palingr is still needed even in the AVX512 context. According to the
latest spec AVX512BW provides these.
llvm-svn: 214887
Rename to allowsMisalignedMemoryAccess.
On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.
llvm-svn: 214055
address of the stack guard was being spilled to the stack.
Previously the address of the stack guard would get spilled to the stack if it
was impossible to keep it in a register. This patch introduces a new target
independent node and pseudo instruction which gets expanded post-RA to a
sequence of instructions that load the stack guard value. Register allocator
can now just remat the value when it can't keep it in a register.
<rdar://problem/12475629>
llvm-svn: 213967
Finkel, Eric Christopher, and a bunch of other people I'm probably
forgetting (sorry), add an option to the x86 backend to widen vectors
during type legalization rather than promote them.
This still would promote vNi1 vectors to get the masks right, but would
widen other vectors. A lot of experiments are piling up right now
showing that widening should probably be the default legalization
strategy outside of vNi1 cases, but it is very hard to test the
rammifications of that and fix bugs in widening-based legalization
without an option that enables it. I'll be checking in tests shortly
that use this option to exercise cases where widening doesn't work well
and hopefully we'll be able to switch fully to this soon.
llvm-svn: 212249
The logic for expanding atomics that aren't natively supported in
terms of cmpxchg loops is much simpler to express at the IR level. It
also allows the normal optimisations and CodeGen improvements to help
out with atomics, instead of using a limited set of possible
instructions..
rdar://problem/13496295
llvm-svn: 212119
This patch adds support for a new builtin instruction called
__builtin_ia32_rdpmc.
Builtin '__builtin_ia32_rdpmc' is defined as a 'GCC builtin'; on X86, it can
be used to read performance monitoring counters. It takes as input the index
of the performance counter to read, and returns the value of the specified
performance counter as a 64-bit number.
Calls to this new builtin will map to instruction RDPMC.
The index in input to the builtin call is moved to register %ECX. The result
of the builtin call is the value of the specified performance counter (RDPMC
would return that quantity in registers RDX:RAX).
This patch:
- Adds builtin int_x86_rdpmc as a GCCBuiltin;
- Adds a new x86 DAG node called 'RDPMC_DAG';
- Teaches how to lower this new builtin;
- Adds an ISel pattern to select instruction RDPMC;
- Fixes the definition of instruction RDPMC adding %RAX and %RDX as
implicit definitions, and adding %ECX as implicit use;
- Adds a LLVM test to verify that the new builtin is correctly selected.
llvm-svn: 212049
instructions available as synthetic SDNodes PACKSS and PACKUS that will
select to the correct instruction variants based on the return type.
This allows us to use these rather important instructions when lowering
vector shuffles.
Also moves the relevant instruction definitions to be split out from
the fully generic multiclasses to allow them to match these new SDNodes
in the same way that the UNPCK instructions do.
No functionality should actually be changed here.
llvm-svn: 211332
The C++ and C semantics of the compare_and_swap operations actually
require us to return a boolean "success" value. In LLVM terms this
means a second comparison of the output of "cmpxchg" against the input
desired value.
However, x86's "cmpxchg" instruction sets all flags for the comparison
formed, so we can skip any secondary comparison. (N.b. this isn't true
for cmpxchg8b/16b, which only set ZF).
rdar://problem/13201607
llvm-svn: 210523
No functionality change intended. The types that previously were set to
lower as Expand or Legal are doing the same thing with this lowering
function.
llvm-svn: 209042
We must validate the value type in TLI::getRegisterByName, because if we
don't and the wrong type was used with the IR intrinsic, then we'll assert
(because we won't be able to find a valid register class with which to
construct the requested copy operation). For PPC64, additionally, the type
information is necessary to decide between the 64-bit register and the 32-bit
subregister.
No functionality change.
llvm-svn: 208508
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).
So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.
llvm-svn: 208104
The Win64 docs are very clear that anything larger than 8 bytes is
passed by reference, and GCC MinGW64 honors that for __modti3 and
friends.
Patch by Jameson Nash!
llvm-svn: 208029
Scaling factors are not free on X86 because every "complex" addressing mode
breaks the related instruction into 2 allocations instead of 1.
<rdar://problem/16730541>
llvm-svn: 207301
This patch:
- Adds two new X86 builtin intrinsics ('int_x86_rdtsc' and
'int_x86_rdtscp') as GCCBuiltin intrinsics;
- Teaches the backend how to lower the two new builtins;
- Introduces a common function to lower READCYCLECOUNTER dag nodes
and the two new rdtsc/rdtscp intrinsics;
- Improves (and extends) the existing x86 test 'rdtsc.ll'; now test 'rdtsc.ll'
correctly verifies that both READCYCLECOUNTER and the two new intrinsics
work fine for both 64bit and 32bit Subtargets.
llvm-svn: 207127
I found this from a particular GDB test suite case of inlining
(something similar is provided as a test case) but came across a few
other related cases (other callers of the same functions, and one other
instance of the same coding mistake in a separate function).
I'm not sure what the best way to test this is (let alone to cover the
other cases I discovered), so hopefully this sufficies - open to ideas.
llvm-svn: 206130