When possible, put ASan ctor/dtor in comdat.
The only reason not to is global registration, which can be
TU-specific. This is not the case when there are no instrumented
globals. This is also limited to ELF targets, because MachO does
not have comdat, and COFF linkers may GC comdat constructors.
The benefit of this is a lot less __asan_init() calls: one per DSO
instead of one per TU. It's also necessary for the upcoming
gc-sections-for-globals change on Linux, where multiple references to
section start symbols trigger quadratic behaviour in gold linker.
llvm-svn: 298756
Create the constructor in the module pass.
This in needed for the GC-friendly globals change, where the constructor can be
put in a comdat in some cases, but we don't know about that in the function
pass.
llvm-svn: 298731
Use a combination of !associated, comdat, @llvm.compiler.used and
custom sections to allow dead stripping of globals and their asan
metadata. Sometimes.
Currently this works on LLD, which supports SHF_LINK_ORDER with
sh_link pointing to the associated section.
This also works on BFD, which seems to treat comdats as
all-or-nothing with respect to linker GC. There is a weird quirk
where the "first" global in each link is never GC-ed because of the
section symbols.
At this moment it does not work on Gold (as in the globals are never
stripped).
Differential Revision: https://reviews.llvm.org/D30121
llvm-svn: 298158
They are register promoted by ISel and so it makes no sense to treat them as
memory.
Inserting calls to the thread sanitizer would also generate invalid IR.
You would hit:
"swifterror value can only be loaded and stored from, or as a swifterror
argument!"
llvm-svn: 295230
Other than on COFF with incremental linking, global metadata should
not need any extra alignment.
Differential Revision: https://reviews.llvm.org/D28628
llvm-svn: 291859
When using profiling and ASan together (-fprofile-instr-generate -fcoverage-mapping -fsanitize=address), at least on Darwin, the section of globals that ASan emits (__asan_globals) is misaligned and starts at an odd offset. This really doesn't have anything to do with profiling, but it triggers the issue because profiling emits a string section, which can have arbitrary size. This patch changes the alignment to sizeof(GlobalStruct).
Differential Revision: https://reviews.llvm.org/D28573
llvm-svn: 291715
This patch renumbers the metadata nodes in debug info testcases after
https://reviews.llvm.org/D26769. This is a separate patch because it
causes so much churn. This was implemented with a python script that
pipes the testcases through llvm-as - | llvm-dis - and then goes
through the original and new output side-by side to insert all
comments at a close-enough location.
Differential Revision: https://reviews.llvm.org/D27765
llvm-svn: 290292
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
Summary:
This change adds some verification in the IR verifier around struct path
TBAA metadata.
Other than some basic sanity checks (e.g. we get constant integers where
we expect constant integers), this checks:
- That by the time an struct access tuple `(base-type, offset)` is
"reduced" to a scalar base type, the offset is `0`. For instance, in
C++ you can't start from, say `("struct-a", 16)`, and end up with
`("int", 4)` -- by the time the base type is `"int"`, the offset
better be zero. In particular, a variant of this invariant is needed
for `llvm::getMostGenericTBAA` to be correct.
- That there are no cycles in a struct path.
- That struct type nodes have their offsets listed in an ascending
order.
- That when generating the struct access path, you eventually reach the
access type listed in the tbaa tag node.
Reviewers: dexonsmith, chandlerc, reames, mehdi_amini, manmanren
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D26438
llvm-svn: 289402
This way, when the linker adds padding between globals, we can skip over
the zero padding bytes and reliably find the start of the next metadata
global.
llvm-svn: 288096
Summary:
This is similar to what was done for Darwin in rL264645 /
http://reviews.llvm.org/D16737, but it uses COFF COMDATs to achive the
same result instead of relying on new custom linker features.
As on MachO, this creates one metadata global per instrumented global.
The metadata global is placed in the custom .ASAN$GL section, which the
ASan runtime will iterate over during initialization. There are no other
references to the metadata, so normal linker dead stripping would
discard it. However, the metadata is put in a COMDAT group with the
instrumented global, so that it will be discarded if and only if the
instrumented global is discarded.
I didn't update the ASan ABI version check since this doesn't affect
non-Windows platforms, and the WinASan ABI isn't really stable yet.
Implementing this for ELF will require extending LLVM IR and MC a bit so
that we can use non-COMDAT section groups.
Reviewers: pcc, kcc, mehdi_amini, kubabrecka
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26770
llvm-svn: 287576
This patch adds support for instrumenting masked loads and stores under
ASan, if they have a constant mask.
isInterestingMemoryAccess now supports returning a mask to be applied to
the loads, and instrumentMop will use it to generate additional checks.
Added tests for v4i32 v8i32, and v4p0i32 (~v4i64) for both loads and
stores (as well as a test to verify we don't add checks to non-constant
masks).
Differential Revision: https://reviews.llvm.org/D26230
llvm-svn: 287047
This addresses PR30746, <https://llvm.org/bugs/show_bug.cgi?id=30746>. The ASan pass iterates over entry-block instructions and checks each alloca whether it's in NonInstrumentedStaticAllocaVec, which is apparently slow. This patch gathers the instructions to move during visitAllocaInst.
Differential Revision: https://reviews.llvm.org/D26380
llvm-svn: 286296
On Darwin, simple C null-terminated constant strings normally end up in the __TEXT,__cstring section of the resulting Mach-O binary. When instrumented with ASan, these strings are transformed in a way that they cannot be in __cstring (the linker unifies the content of this section and strips extra NUL bytes, which would break instrumentation), and are put into a generic __const section. This breaks some of the tools that we have: Some tools need to scan all C null-terminated strings in Mach-O binaries, and scanning all the contents of __const has a large performance penalty. This patch instead introduces a special section, __asan_cstring which will now hold the instrumented null-terminated strings.
Differential Revision: https://reviews.llvm.org/D25026
llvm-svn: 285619
Programs with very large __llvm_covmap sections may fail to link on
Darwin because because of out-of-range 32-bit RIP relative references.
It isn't possible to work around this by using the large code model
because it isn't supported on Darwin. One solution is to move the
__llvm_covmap section past the end of the __DATA segment.
=== Testing ===
In addition to check-{llvm,clang,profile}, I performed a link test on a
simple object after injecting ~4GB of padding into __llvm_covmap:
@__llvm_coverage_padding = internal constant [4000000000 x i8] zeroinitializer, section "__LLVM_COV,__llvm_covmap", align 8
(This test is too expensive to check-in.)
=== Backwards Compatibility ===
This patch should not pose any backwards-compatibility concerns. LLVM
is expected to scan all of the sections in a binary for __llvm_covmap,
so changing its segment shouldn't affect anything. I double-checked this
by loading coverage produced by an unpatched compiler with a patched
llvm-cov.
Suggested by Nick Kledzik.
llvm-svn: 285360
The binder is in a specific section that "reverse" the edges in a
regular dead-stripping: the binder is live as long as a global it
references is live.
This is a big hammer that prevents LLVM from dead-stripping these,
while still allowing linker dead-stripping (with special knowledge
of the section).
Differential Revision: https://reviews.llvm.org/D24673
llvm-svn: 282988
Summary:
This patch is adding the support for a shadow memory with
dynamically allocated address range.
The compiler-rt needs to export a symbol containing the shadow
memory range.
This is required to support ASAN on windows 64-bits.
Reviewers: kcc, rnk, vitalybuka
Subscribers: zaks.anna, kubabrecka, dberris, llvm-commits, chrisha
Differential Revision: https://reviews.llvm.org/D23354
llvm-svn: 282881
This is a follow-up to r281284. Global Variables now can have
!dbg attachements, so ASAN should clone these when generating a
sanitized copy of a global variable.
<rdar://problem/24899262>
llvm-svn: 281994
Summary:
This patch is adding the support for a shadow memory with
dynamically allocated address range.
The compiler-rt needs to export a symbol containing the shadow
memory range.
This is required to support ASAN on windows 64-bits.
Reviewers: kcc, rnk, vitalybuka
Subscribers: kubabrecka, dberris, llvm-commits, chrisha
Differential Revision: https://reviews.llvm.org/D23354
llvm-svn: 281908
Summary:
Function __asan_default_options is called by __asan_init before the
shadow memory got initialized. Instrumenting that function may lead
to flaky execution.
As the __asan_default_options is provided by users, we cannot expect
them to add the appropriate function atttributes to avoid
instrumentation.
Reviewers: kcc, rnk
Subscribers: dberris, chrisha, llvm-commits
Differential Revision: https://reviews.llvm.org/D24566
llvm-svn: 281503
Summary:
Could be useful for comparison when we suspect that alloca was skipped
because of this.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24437
llvm-svn: 281126
Summary:
C allows to jump over variables declaration so lifetime.start can be
avoid before variable usage. To avoid false-positives on such rare cases
we detect them and remove from lifetime analysis.
PR27453
PR28267
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24321
llvm-svn: 280907
Summary:
C allows to jump over variables declaration so lifetime.start can be
avoid before variable usage. To avoid false-positives on such rare cases
we detect them and remove from lifetime analysis.
PR27453
PR28267
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24321
llvm-svn: 280880
Summary:
Calling __asan_poison_stack_memory and __asan_unpoison_stack_memory for small
variables is too expensive.
Code is disabled by default and can be enabled by -asan-experimental-poisoning.
PR27453
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23947
llvm-svn: 279984
Summary:
We can insert function call instead of multiple store operation.
Current default is blocks larger than 64 bytes.
Changes are hidden behind -asan-experimental-poisoning flag.
PR27453
Differential Revision: https://reviews.llvm.org/D23711
llvm-svn: 279383
Summary:
Callbacks are not being used yet.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23634
llvm-svn: 279380
Summary: Reduce store size to avoid leading and trailing zeros.
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23648
llvm-svn: 279379
Summary: Reduce store size to avoid leading and trailing zeros.
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23648
llvm-svn: 279178
Summary:
Clang inserts cleanup code before resume similar way as before return instruction.
This makes asan poison local variables causing false use-after-scope reports.
__asan_handle_no_return does not help here as it was executed before
llvm.lifetime.end inserted into resume block.
To avoid false report we need to unpoison stack for resume same way as for return.
PR27453
Reviewers: kcc, eugenis
Differential Revision: https://reviews.llvm.org/D22661
llvm-svn: 276480
Summary:
Clang inserts GetElementPtrInst so findAllocaForValue was not
able to find allocas.
PR27453
Reviewers: kcc, eugenis
Differential Revision: https://reviews.llvm.org/D22657
llvm-svn: 276374
It's only useful to asan-itize profiling globals while debugging llvm's
profiling instrumentation passes. Enabling asan along with instrprof or
gcov instrumentation shouldn't incur extra overhead.
This patch is in the same spirit as r264805 and r273202, which disabled
tsan instrumentation of instrprof/gcov globals.
Differential Revision: http://reviews.llvm.org/D21541
llvm-svn: 273444
Do not instrument pointers with address space attributes since we cannot track
them anyway. Instrumenting them results in false positives in ASan and a
compiler crash in TSan. (The compiler should not crash in any case, but that's
a different problem.)
llvm-svn: 273339
CodeGen has hooks that allow targets to emit specialized code instead
of calls to memcmp, memchr, strcpy, stpcpy, strcmp, strlen, strnlen.
When ASan/MSan/TSan/ESan is in use, this sidesteps its interceptors, resulting
in uninstrumented memory accesses. To avoid that, make these sanitizers
mark the calls as nobuiltin.
Differential Revision: http://reviews.llvm.org/D19781
llvm-svn: 273083
Summary:
We failed to unpoison uninteresting allocas on return as unpoisoning is part of
main instrumentation which skips such allocas.
Added check -asan-instrument-allocas for dynamic allocas. If instrumentation of
dynamic allocas is disabled it will not will not be unpoisoned.
PR27453
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21207
llvm-svn: 272341
Summary:
We still want to unpoison full stack even in use-after-return as it can be disabled at runtime.
PR27453
Reviewers: eugenis, kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D21202
llvm-svn: 272334
Allowing overriding the default ASAN shadow mapping offset with the
-asan-shadow-offset option, and allow zero to be specified for both offset and
scale.
Patch by Aaron Carroll <aaronc@apple.com>.
llvm-svn: 268724
Allowing overriding the default ASAN shadow mapping offset with the
-asan-shadow-offset option, and allow zero to be specified for both offset and
scale.
llvm-svn: 268586
Summary:
This is done for consistency with asan-use-after-return.
I see no other users than tests.
Reviewers: aizatsky, kcc
Differential Revision: http://reviews.llvm.org/D19306
llvm-svn: 266906
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
On OS X El Capitan and iOS 9, the linker supports a new section
attribute, live_support, which allows dead stripping to remove dead
globals along with the ASAN metadata about them.
With this change __asan_global structures are emitted in a new
__DATA,__asan_globals section on Darwin.
Additionally, there is a __DATA,__asan_liveness section with the
live_support attribute. Each entry in this section is simply a tuple
that binds together the liveness of a global variable and its ASAN
metadata structure. Thus the metadata structure will be alive if and
only if the global it references is also alive.
Review: http://reviews.llvm.org/D16737
llvm-svn: 264645
As discussed in https://github.com/google/sanitizers/issues/398, with current
implementation of poisoning globals we can have some CHECK failures or false
positives in case of mixing instrumented and non-instrumented code due to ASan
poisons innocent globals from non-sanitized binary/library. We can use private
aliases to avoid such errors. In addition, to preserve ODR violation detection,
we introduce new __odr_asan_gen_XXX symbol for each instrumented global that
indicates if this global was already registered. To detect ODR violation in
runtime, we should only check the value of indicator and report an error if it
isn't equal to zero.
Differential Revision: http://reviews.llvm.org/D15642
llvm-svn: 260075
Summary: If the same pass manager is used for multiple modules ASAN
complains about GlobalsMD being initialized twice. Fix this by
resetting GlobalsMD in a new doFinalization method to allow this
use case.
Reviewers: kcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14962
llvm-svn: 254851
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
inalloca variables were not treated as static allocas, therefore didn't
participate in regular stack instrumentation. We don't want them to
participate in dynamic alloca instrumentation as well.
llvm-svn: 252213
* Don't instrument promotable dynamic allocas:
We already have a test that checks that promotable dynamic allocas are
ignored, as well as static promotable allocas. Make sure this test will
still pass if/when we enable dynamic alloca instrumentation by default.
* Handle lifetime intrinsics before handling dynamic allocas:
lifetime intrinsics may refer to dynamic allocas, so we need to emit
instrumentation before these dynamic allocas would be replaced.
Differential Revision: http://reviews.llvm.org/D12704
llvm-svn: 251045
These sections contain pointers to function that should be invoked
during startup/shutdown by __libc_csu_init and __libc_csu_fini.
Instrumenting these globals will append redzone to them, which will be
filled with zeroes. This will cause null pointer dereference at runtime.
Merge ASan regression tests for globals that should be ignored by
instrumentation pass.
llvm-svn: 247734
As a follow-up to r246098, require `DISubprogram` definitions
(`isDefinition: true`) to be 'distinct'. Specifically, add an assembler
check, a verifier check, and bitcode upgrading logic to combat testcase
bitrot after the `DIBuilder` change.
While working on the testcases, I realized that
test/Linker/subprogram-linkonce-weak-odr.ll isn't relevant anymore. Its
purpose was to check for a corner case in PR22792 where two subprogram
definitions match exactly and share the same metadata node. The new
verifier check, requiring that subprogram definitions are 'distinct',
precludes that possibility.
I updated almost all the IR with the following script:
git grep -l -E -e '= !DISubprogram\(.* isDefinition: true' |
grep -v test/Bitcode |
xargs sed -i '' -e 's/= \(!DISubprogram(.*, isDefinition: true\)/= distinct \1/'
Likely some variant of would work for out-of-tree testcases.
llvm-svn: 246327
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
Summary:
returns_twice (most importantly, setjmp) functions are
optimization-hostile: if local variable is promoted to register, and is
changed between setjmp() and longjmp() calls, this update will be
undone. This is the reason why "man setjmp" advises to mark all these
locals as "volatile".
This can not be enough for ASan, though: when it replaces static alloca
with dynamic one, optionally called if UAR mode is enabled, it adds a
whole lot of SSA values, and computations of local variable addresses,
that can involve virtual registers, and cause unexpected behavior, when
these registers are restored from buffer saved in setjmp.
To fix this, just disable dynamic alloca and UAR tricks whenever we see
a returns_twice call in the function.
Reviewers: rnk
Subscribers: llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D11495
llvm-svn: 243561
We currently version `__asan_init` and when the ABI version doesn't match, the linker gives a `undefined reference to '__asan_init_v5'` message. From this, it might not be obvious that it's actually a version mismatch error. This patch makes the error message much clearer by changing the name of the undefined symbol to be `__asan_version_mismatch_check_xxx` (followed by the version string). We obviously don't want the initializer to be named like that, so it's a separate symbol that is used only for the purpose of version checking.
Reviewed at http://reviews.llvm.org/D11004
llvm-svn: 243003
In r242510, non-instrumented allocas are now moved into the first basic block. This patch limits that to only move allocas that are present *after* the first instrumented one (i.e. only move allocas up). A testcase was updated to show behavior in these two cases. Without the patch, an alloca could be moved down, and could cause an invalid IR.
Differential Revision: http://reviews.llvm.org/D11339
llvm-svn: 242883
Summary:
Arguments to llvm.localescape must be static allocas. They must be at
some statically known offset from the frame or stack pointer so that
other functions can access them with localrecover.
If we ever want to instrument these, we can use more indirection to
recover the addresses of these local variables. We can do it during
clang irgen or with the asan module pass.
Reviewers: eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11307
llvm-svn: 242726