Something like { void*, void * } would be passed to a function as a [2 x i64], but returned as an i128. This patch unifies the 2 behaviours so that we also return it as a [2 x i64].
This is better for the quality of the IR, and the size of the final LLVM binary as we tend to want to insert/extract values from these types and do so with the insert/extract instructions is less IR than shifting, truncating, and or'ing values.
Reviewed by Tim Northover.
llvm-svn: 235231
Things can't both be in comdats and have common linkage, so never give things
in comdats common linkage. Common linkage is only used in .c files, and the
only thing that can trigger a comdat in c is selectany from what I can tell.
Fixes PR23243.
Also address an over-the-shoulder review comment from rnk by moving the
hasAttr<SelectAnyAttr>() in Decl.cpp around a bit. It only makes a minor
difference for selectany on global variables, so it goes well with the rest of
this patch.
http://reviews.llvm.org/D9042
llvm-svn: 235053
This patch generates a warning for invalid combination of '-mnan' and
'-march' options, it properly sets NaN encoding for a given '-march',
and it passes a proper NaN encoding to the assembler.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D8170
llvm-svn: 234882
Even though these symbols are in a comdat group, the Microsoft linker
really wants them to have internal linkage.
I'm planning to tweak the mangling in a follow-up change. This is a
straight revert with a 1-line fix.
llvm-svn: 234613
Now that TailRecursionElimination has been fixed with r222354, the
threshold on size for lifetime marker insertion can be removed. This
only affects named temporary though, as the patch for unnamed temporaries
is still in progress.
My previous commit (r222993) was not handling debuginfo correctly, but
this could only be seen with some asan tests. Basically, lifetime markers
are just instrumentation for the compiler's usage and should not affect
debug information; however, the cleanup infrastructure was assuming it
contained only destructors, i.e. actual code to be executed, and was
setting the breakpoint for the end of the function to the closing '}', and
not the return statement, in order to show some destructors have been
called when leaving the function. This is wrong when the cleanups are only
lifetime markers, and this is now fixed.
llvm-svn: 234581
This patch corresponds to review:
http://reviews.llvm.org/D8398
It adds some builtin functions to access the extended divide and bit permute instructions.
llvm-svn: 234547
WinEHPrepare was going to have to pattern match the control flow merge
and split that the old lowering used, and that wasn't really feasible.
Now we can teach WinEHPrepare to pattern match this, which is much
simpler:
%fp = call i8* @llvm.frameaddress(i32 0)
call void @func(iN [01], i8* %fp)
This prototype happens to match the prototype used by the Win64 SEH
personality function, so this is really simple.
llvm-svn: 234532
The driver currently accepts but ignores the -freciprocal-math flag.
This patch passes the flag through and enables 'arcp' fast-math-flag
generation in IR.
Note that this change does not actually enable the optimization for
any target. The reassociation optimization that this flag specifies
was implemented by http://reviews.llvm.org/D6334 :
http://llvm.org/viewvc/llvm-project?view=revision&revision=222510
Because the optimization is done in the backend rather than IR,
the backend must be modified to understand instruction-level
fast-math-flags or a new function-level attribute must be created.
Also note that -freciprocal-math is independent of any target-specific
usage of reciprocal estimate hardware instructions. That requires
its own flag ('-mrecip').
https://llvm.org/bugs/show_bug.cgi?id=20912
llvm-svn: 234493
Do the same thing as win64. If we're not using COFF, use the ELF
manglings. Maybe if we are targetting *-windows-msvc-macho, we should
use darwin manglings, but I don't need to stir that pot today.
llvm-svn: 233819
The zEC12 provides the transactional-execution facility. This is exposed
to users via a set of builtin routines on other compilers. This patch
adds clang support to enable those builtins. In partciular, the patch:
- enables the transactional-execution feature by default on zEC12
- allows to override presence of that feature via the -mhtm/-mno-htm options
- adds a predefined macro __HTM__ if the feature is enabled
- adds support for the transactional-execution GCC builtins
- adds Sema checking to verify the __builtin_tabort abort code
- adds the s390intrin.h header file (for GCC compatibility)
- adds s390 sections to the htmintrin.h and htmxlintrin.h header files
Since this is first use of target-specific intrinsics on the platform,
the patch creates the include/clang/Basic/BuiltinsSystemZ.def file and
hooks it up in TargetBuiltins.h and lib/Basic/Targets.cpp.
An associated LLVM patch adds the required LLVM IR intrinsics.
For reference, the transactional-execution instructions are documented
in the z/Architecture Principles of Operation for the zEC12:
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR009.pdf
The associated builtins are documented in the GCC manual:
http://gcc.gnu.org/onlinedocs/gcc/S_002f390-System-z-Built-in-Functions.html
The htmxlintrin.h intrinsics provided for compatibility with the IBM XL
compiler are documented in the "z/OS XL C/C++ Programming Guide".
llvm-svn: 233804
Add Tool and ToolChain support for clang to target the NaCl OS using the NaCl
SDK for x86-32, x86-64 and ARM.
Includes nacltools::Assemble and Link which are derived from gnutools. They
are similar to Linux but different enought that they warrant their own class.
Also includes a NaCl_TC in ToolChains derived from Generic_ELF with library
and include paths suitable for an SDK and independent of the system tools.
Differential Revision: http://reviews.llvm.org/D8590
llvm-svn: 233594
The argument range checks for the HTM and Crypto builtins were implemented in
CGBuiltin.cpp, not in Sema. This change moves them to the appropriate location
in SemaChecking.cpp. It requires the creation of a new method in the Sema class
to do checks for PPC-specific builtins.
http://reviews.llvm.org/D8672
llvm-svn: 233586
Test cases must not check for symbolic variable names that are not
present in IR generated by no-assert builds.
Fixed by testing a more complete subset of the va_arg dataflow,
without relying on variable names.
llvm-svn: 233574
Running the GCC's inter-compiler ABI compatibility test suite uncovered
a couple of errors in clang's SystemZ ABI implementation. These all
affect only rare corner cases:
- Short vector types
GCC synthetic vector types defined with __attribute__ ((vector_size ...))
are always passed and returned by reference. (This is not documented in
the official ABI document, but is the de-facto ABI implemented by GCC.)
clang would do that only for vector sizes >= 16 bytes, but not for shorter
vector types.
- Float-like aggregates and empty bitfields
clang would consider any aggregate containing an empty bitfield as
first element to be a float-like aggregate. That's obviously wrong.
According to the ABI doc, the presence of an empty bitfield makes
an aggregate to be *not* float-like. However, due to a bug in GCC,
empty bitfields are ignored in C++; this patch changes clang to be
compatible with this "feature" of GCC.
- Float-like aggregates and va_arg
The va_arg implementation would mis-detect some aggregates as float-like
that aren't actually passed as such. This applies to aggregates that
have only a single element of type float or double, but using an aligned
attribute that increases the total struct size to more than 8 bytes.
This error occurred because the va_arg implement used to have an copy
of the float-like aggregate detection logic (i.e. it would call the
isFPArgumentType routine, but not perform the size check).
To simplify the logic, this patch removes the duplicated logic and
instead simply checks the (possibly coerced) LLVM argument type as
already determined by classifyArgumentType.
llvm-svn: 233543
Eric Christopher pointed out that we have a check for assembly code
generation in a clang test, which isn't cool. We already have Driver
and back-end CodeGen tests for the .abiversion handling, so this
testing is unnecessary anyway. Make it go away.
llvm-svn: 233314
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], with both 'PowerPC HTM
Low Level Built-in Functions' and 'PowerPC HTM High Level Inline Functions'
implemented.
Along with builtins a new driver switch is added to enable/disable HTM
instruction support (-mhtm) and a header with common definitions (mostly to
parse the TFHAR register value). The HTM switch also sets a preprocessor builtin
HTM.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a llvm patch to enabled the builtins and option switch.
[1]
https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8248
llvm-svn: 233205
I'm about to commit a patch for:
http://reviews.llvm.org/D8567
That patch will break this one existing test case in Clang.
I'm not sure if this file is intending to create a Clang
dependency on the LLVM IR optimizer, but that's the
consequence of specifying -O3 on this test file.
My hope is to avoid buildbot rage by removing this check,
committing the LLVM patch, and then fixing this check.
I don't know how to make a simultaneous commit to Clang
and LLVM.
I will commit the correct CHECK line fix for this test
shortly.
llvm-svn: 233109
PS4 target recognizes the #pragma comment() syntax as in -fms-extensions, but
only handles the case of #pragma comment(lib). This patch adds a warning if any
other arguments are encountered.
This patch also refactors the code in ParsePragma.cpp a little bit to make it
more obvious that some codes are being shared between -fms-extensions and PS4.
llvm-svn: 233015
On AArch64, the -fallow-half-args-and-returns option is the default.
With it, the half type is considered legal (rather than the i16 used
normally for __fp16), but no operation is, except conversions and
load/stores and such.
The previous behavior was tantamount to saying LangOpts.NativeHalfType
was implied by LangOpts.HalfArgsAndReturns, which isn't true.
Instead, teach the various parts of CodeGen that already know about
half (using the intrinsics or not) about this weird in-between case,
where the "half" type is legal, but operations on it aren't.
This is a smaller intermediate step to the end-goal of removing the
intrinsic, always using "half", and letting the backend legalize.
Builds on r232968.
rdar://20045970, rdar://17468714
Differential Revision: http://reviews.llvm.org/D8367
llvm-svn: 232971
Fix the CodeGen so that for types bigger than float, instead of
converting to fp16 via the sequence "InTy -> float -> fp16", we
perform conversions in just one step. This avoids the double
rounding which potentially changes results from a natural
IEEE-754 operation.
rdar://17594379, rdar://17468714
Differential Revision: http://reviews.llvm.org/D4602
Part of: http://reviews.llvm.org/D8367
llvm-svn: 232968
the target-cpu, if different from the triple's cpu, and
target-features as they're written that are passed down from the
driver.
Together with LLVM r232885 this should allow the LTO'ing of binaries
that contain modules compiled with different code generation options
on a subset of architectures with full backend support (x86, powerpc,
aarch64).
llvm-svn: 232888
Somehow, we never managed to implement this fully. We could constant
fold it like crazy, including constant folding complex arguments, etc.
But if you actually needed to generate code for it, error.
I've implemented it using the somewhat obvious lowering. Happy for
suggestions on a more clever way to lower this.
Now, what you might ask does this have to do with modules? Fun story. So
it turns out that libstdc++ actually uses __builtin_isinf_sign to
implement std::isinf when in C++98 mode, but only inside of a template.
So if we're lucky, and we never instantiate that, everything is good.
But once we try to instantiate that template function, we need this
builtin. All of my customers at least are using C++11 and so they never
hit this code path.
But what does that have to do with modules? Fun story. So it turns out
that with modules we actually observe a bunch of bugs in libstdc++ where
their <cmath> header clobbers things exposed by <math.h>. To fix these,
we have to provide global function definitions to replace the macros
that C99 would have used. And it turns out that ::isinf needs to be
implemented using the exact semantics used by the C++98 variant of
std::isinf. And so I started to fix this bug in libstdc++ and ceased to
be able to compile libstdc++ with Clang.
The yaks are legion.
llvm-svn: 232778
location data is available. If pragma handling wants to look up the
position, it finds the LLVM buffer and wants to compare it with the
special built-in buffer, failing badly. Extend to the special handling
of the built-in buffer to also check for the inline asm buffer. Expect
only a single asm buffer. Sort it between the built-in buffers and the
normal file buffers.
Fixes the assert part of PR 22576.
llvm-svn: 232389
In preparation for recommit of revision 232190, change tests so that they
are resilient to operands being commuted by the reassociate pass.
llvm-svn: 232206
This is nearly identical to the v*f128_si256 parts of r231792 and r232052.
AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.
This should complete the front end fixes for insert/extract128 intrinsics.
Corresponding LLVM patch to follow.
llvm-svn: 232109
This is very much like D8088 (checked in at r231792).
Now that we've replaced the vinsertf128 intrinsics,
do the same for their extract twins.
Differential Revision: http://reviews.llvm.org/D8275
llvm-svn: 232052
Support for the QPX vector instruction set, used on the IBM BG/Q supercomputer,
has recently been added to the LLVM PowerPC backend. This vector instruction
set requires some ABI modifications because the ABI on the BG/Q expects
<4 x double> vectors to be provided with 32-byte stack alignment, and to be
handled as native vector types (similar to how Altivec vectors are handled on
mainline PPC systems). I've named this ABI variant elfv1-qpx, have made this
the default ABI when QPX is supported, and have updated the ABI handling code
to provide QPX vectors with the correct stack alignment and associated
register-assignment logic.
llvm-svn: 231960
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is the sibling patch for the LLVM half of this change:
http://reviews.llvm.org/D8086
Differential Revision: http://reviews.llvm.org/D8088
llvm-svn: 231792
This is a recommit of r231150, reverted in r231409. Turns out
that -fsanitize=shift-base check implementation only works if the
shift exponent is valid, otherwise it contains undefined behavior
itself.
Make sure we check that exponent is valid before we proceed to
check the base. Make sure that we actually report invalid values
of base or exponent if -fsanitize=shift-base or
-fsanitize=shift-exponent is specified, respectively.
llvm-svn: 231711
When passing a type with large alignment byval, we were specifying the type's
alignment rather than the alignment that the backend is actually capable of
producing (ABIAlign).
This would be OK (if odd) assuming the backend dealt with it prooperly,
unfortunately it doesn't and trying to pass types with "byval align 16" can
cause it to set fp incorrectly and trash the stack during the prologue. I'll be
fixing that in a separate patch, but Clang should still be emitting IR that's
as close to its intent as possible.
rdar://20059039
llvm-svn: 231706
It's not that easy. If we're only checking -fsanitize=shift-base we
still need to verify that exponent has sane value, otherwise
UBSan-inserted checks for base will contain undefined behavior
themselves.
llvm-svn: 231409
Opt in Win64 to supporting sjlj lowering. We have the backend lowering,
so I think this was just an oversight because WinX86_64TargetCodeGenInfo
doesn't inherit from X86_64TargetCodeGenInfo.
llvm-svn: 231280
This test doesn't provide any value (it just checks that the frontend
produces exactly one compile unit), and it certainly isn't doing what
the comment says. Noticed via IRC review of my update to it in r231083.
llvm-svn: 231152
-fsanitize=shift is now a group that includes both these checks, so
exisiting users should not be affected.
This change introduces two new UBSan kinds that sanitize only left-hand
side and right-hand side of shift operation. In practice, invalid
exponent value (negative or too large) tends to cause more portability
problems, including inconsistencies between different compilers, crashes
and inadequeate results on non-x86 architectures etc. That is,
-fsanitize=shift-exponent failures should generally be addressed first.
As a bonus, this change simplifies CodeGen implementation for emitting left
shift (separate checks for base and exponent are now merged by the
existing generic logic in EmitCheck()), and LLVM IR for these checks
(the number of basic blocks is reduced).
llvm-svn: 231150
Originally we were using the same GCC builtins to lower this AVX2 vector
intrinsic. Instead we will now lower it directly to a vector shuffle.
This will not only allow LLVM to generate better code, but it will also allow us
to remove the GCC intrinsics.
Reviewed by Andrea
This is related to rdar://problem/18742778.
llvm-svn: 231081
For global reg lvalue - use regular store through global register.
For simple lvalue - use simple atomic store.
For bitfields, vector element, extended vector elements - the original value of the whole storage (for vector elements) or of some aligned value (for bitfields) is atomically read, the part of this value for the given lvalue is modified and then use atomic compare-and-exchange operation to try to atomically write modified value (if it was not modified).
Also, changes in this patch fix the bug for '#pragma omp atomic read' applied to extended vector elements.
Differential Revision: http://reviews.llvm.org/D7369
llvm-svn: 230736
The __finally emission block tries to be clever by removing unused continuation
edges if there's an unconditional jump out of the __finally block. With
exception edges, the EH continuation edge isn't always unused though and we'd
crash in a few places.
Just don't be clever. That makes the IR for __finally blocks a bit longer in
some cases (hence small and behavior-preserving changes to existing tests), but
it makes no difference in general and it fixes the last crash from PR22553.
http://reviews.llvm.org/D7918
llvm-svn: 230697
Currently, the NaN values emitted for MIPS architectures do not cover
non-IEEE754-2008 compliant case. This change fixes the issue.
Patch by Vladimir Radosavljevic.
Differential Revision: http://reviews.llvm.org/D7882
llvm-svn: 230653
Original CL description:
Produce less broken basic block sequences for __finally blocks.
The way cleanups (such as PerformSEHFinally) get emitted is that codegen
generates some initialization code, then calls the cleanup's Emit() with the
insertion point set to a good place, then the cleanup is supposed to emit its
stuff, and then codegen might tack in a jump or similar to where the insertion
point is after the cleanup.
The PerformSEHFinally cleanup tries to just stash away the block it's supposed
to codegen into, and then does codegen later, into that stashed block. However,
after codegen'ing the __finally block, it used to set the insertion point to
the finally's continuation block (where the __finally cleanup goes when its body
is completed after regular, non-exceptional control flow). That's not correct,
as that block can (and generally does) already ends in a jump. Instead,
remember the insertion point that was current before the __finally got emitted,
and restore that.
Fixes two of the crashes in PR22553.
llvm-svn: 230503
The way cleanups (such as PerformSEHFinally) get emitted is that codegen
generates some initialization code, then calls the cleanup's Emit() with the
insertion point set to a good place, then the cleanup is supposed to emit its
stuff, and then codegen might tack in a jump or similar to where the insertion
point is after the cleanup.
The PerformSEHFinally cleanup tries to just stash away the block it's supposed
to codegen into, and then does codegen later, into that stashed block. However,
after codegen'ing the __finally block, it used to set the insertion point to
the finally's continuation block (where the __finally cleanup goes when its body
is completed after regular, non-exceptional control flow). That's not correct,
as that block can (and generally does) already ends in a jump. Instead,
remember the insertion point that was current before the __finally got emitted,
and restore that.
Fixes two of the crashes in PR22553.
llvm-svn: 230460
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
The backend should now be able to handle all AAPCS rules based on argument
type, which means Clang no longer has to duplicate the register-counting logic
and the CodeGen can be significantly simplified.
llvm-svn: 230349
MSVC does not support C99 _Complex.
ICC, however, does support it on windows x86_64, and treats it, for purposes of parameter passing, as equivalent to a struct containing two fields (for the real and imaginary part).
Differential Revision: http://reviews.llvm.org/D7825
llvm-svn: 230315
llvm.eh.sjlj.setjmp / llvm.eh.sjlj.longjmp, if the backend is known to
support them outside the Exception Handling context. The default
handling in LLVM codegen doesn't work and will create incorrect code.
The ARM backend on the other hand will assert if the intrinsics are
used.
llvm-svn: 230255
For now -funique-section-names is the default, so no change in default behavior.
The total .o size in a build of llvm and clang goes from 241687775 to 230649031
bytes if -fno-unique-section-names is used.
llvm-svn: 230031
Summary:
The definition for _mm256_insert_epi64 was taking an int, which would get
truncated before being inserted in the vector.
Original patch by Joshua Magee!
Reviewers: bruno, craig.topper
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D7179
llvm-svn: 229811
Not all targets generate 'store atomic' instructions for
'_Atomic(_Complex int)'. Some targets use the __atomic_store builtin instead.
This commit makes the test accept either one.
llvm-svn: 229676
This is a patch for PR22563 ( http://llvm.org/bugs/show_bug.cgi?id=22563 ).
We were not correctly unwrapping a single 256-bit AVX vector that was defined as an array of 1 inside a struct.
We would generate a <4 x float> param/return value instead of <8 x float> and lose half of the vector.
Differential Revision: http://reviews.llvm.org/D7614
llvm-svn: 229408
For #pragma comment(linker, ...) MSVC expects the comment string to be quoted, but for #pragma comment(lib, ...) the compiler itself quotes the library name.
Since this distinction disappears by the time the directive reaches the backend, move quoting for the "lib" version to the frontend.
Differential Revision: http://reviews.llvm.org/D7653
llvm-svn: 229376
Bools are a little tricky, they are i8 in memory and must be coerced
back to i1 before further operations can be performed on them.
This fixes PR22577.
llvm-svn: 229204
The first change won't touch GEPOperators such as these, but the update
script only identifies them by the leading '(' after getelementptr or
'getelementptr inbounds', so update this test to at least have those
features to allow auto-migrating.
llvm-svn: 229198
The /volatile:ms semantics turn volatile loads and stores into atomic
acquire and release operations. This distinction is important because
volatile memory operations do not form a happens-before relationship
with non-atomic memory. This means that a volatile store is not
sufficient for implementing a mutex unlock routine.
Differential Revision: http://reviews.llvm.org/D7580
llvm-svn: 229082
Summary:
This patch installs an InlineAsmDiagnosticsHandler to avoid the crash
report when the input is bitcode and the bitcode contains invalid inline
assembly. The handler will simply print the same error message that will
print from the backend.
Add CHECK in test-case
Reviewers: echristo, rafael
Reviewed By: rafael
Subscribers: rafael, cfe-commits
Differential Revision: http://reviews.llvm.org/D7568
llvm-svn: 228898
a non-uniqueable temporary node that is only turned into a permanent
unique or distinct node after it is finished.
Otherwise an intermediate node may get accidentally uniqued with another
node as illustrated by the testcase.
Paired commit with LLVM.
llvm-svn: 228855
Also removed unused builtins.
Original patch by Andrea Di Biagio!
Reviewers: craig.topper, nadav
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D7199
llvm-svn: 228481
modifiers on them. If we have a matching output constraint with
an early clobber make sure we don't propagate that to the input
constraint.
llvm-svn: 228422
After r228258, Clang started emitting C++ EH IR that LLVM wasn't ready
to deal with, even when exceptions were disabled with /EHs-. This time,
make /EHs- turn off -fexceptions while still emitting exceptional
constructs in functions using __try. Since Sema rejects C++ exception
handling constructs before CodeGen, landingpads should only appear in
such functions as the result of a __try.
llvm-svn: 228329
Previously we would simply double-emit the body of the __finally block,
but that doesn't work when it contains any kind of Decl, which we can't
double emit.
This fixes that by emitting the block once and branching into a shared
code region and then branching back out.
llvm-svn: 228222
Summary:
Named registers with the constraint "=&r" currently lose the early clobber flag
and turn into "=r" when converted to LLVM-IR. This patch correctly passes it on.
Reviewers: atanasyan
Reviewed By: atanasyan
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D7346
llvm-svn: 228143
Create a new TargetCodeGenInfo for Windows on ARM to permit annotating the
functions with stack-probe-size (for /Gs and -mstack-probe-support) for
generating the stack probe necessary for Windows targets. This will be used by
the backend when lowering the frame to generate the stack probe appropriately.
llvm-svn: 227641
On targets which use the MSVCRT, setjmp is a macro which expands to
_setjmp or _setjmpex.
_setjmp and _setjmpex have a secret, hidden argument which is not listed
in the function prototype on X64 and WoA. This hidden argument always
seems to be the frame pointer.
_setjmpex isn't used on X86, _setjmp is magically replaced with a call
to _setjmp3. The second argument is zero for 'normal' setjmp/longjmp
pairs, otherwise it is a count of additional variadic arguments. This
is used when setjmp appears inside of a try or __try.
It is not safe to use a pointer to setjmp because _setjmp, _setjmpex and
_setmp3 are not compatible with setjmp.
llvm-svn: 227426
Summary:
It was used for interoperability with PNaCl's calling conventions, but
it's no longer needed.
Also Remove NaCl*ABIInfo which just existed to delegate to either the portable
or native ABIInfo, and remove checkCallingConvention which was now a no-op
override.
Reviewers: jvoung
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D7206
llvm-svn: 227362
The backend won't run LowerExpect on -O0. In a debug LTO build, this results in llvm.expect intrinsics being in the LTO IR which doesn't know how to optimize them.
Thanks to Chandler for the suggestion and review.
Differential revision: http://reviews.llvm.org/D7183
llvm-svn: 227135
The lowering looks a lot like normal EH lowering, with the exception
that the exceptions are caught by executing filter expression code
instead of matching typeinfo globals. The filter expressions are
outlined into functions which are used in landingpad clauses where
typeinfo would normally go.
Major aspects that still need work:
- Non-call exceptions in __try bodies won't work yet. The plan is to
outline the __try block in the frontend to keep things simple.
- Filter expressions cannot use local variables until capturing is
implemented.
- __finally blocks will not run after exceptions. Fixing this requires
work in the LLVM SEH preparation pass.
The IR lowering looks like this:
// C code:
bool safe_div(int n, int d, int *r) {
__try {
*r = normal_div(n, d);
} __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) {
return false;
}
return true;
}
; LLVM IR:
define i32 @filter(i8* %e, i8* %fp) {
%ehptrs = bitcast i8* %e to i32**
%ehrec = load i32** %ehptrs
%code = load i32* %ehrec
%matches = icmp eq i32 %code, i32 u0xC0000094
%matches.i32 = zext i1 %matches to i32
ret i32 %matches.i32
}
define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) {
%rr = invoke i32 @normal_div(i32 %n, i32 %d)
to label %normal unwind to label %lpad
normal:
store i32 %rr, i32* %r
ret i1 1
lpad:
%ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler
catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*)
%ehptr = extractvalue {i8*, i32} %ehvals, i32 0
%sel = extractvalue {i8*, i32} %ehvals, i32 1
%filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*))
%matches = icmp eq i32 %sel, %filter_sel
br i1 %matches, label %eh.except, label %eh.resume
eh.except:
ret i1 false
eh.resume:
resume
}
Reviewers: rjmccall, rsmith, majnemer
Differential Revision: http://reviews.llvm.org/D5607
llvm-svn: 226760
It fails on Windows due to another temporary being emitted first, so the
LLVM internal renaming scheme gives out the name
__block_descriptor_tmp1.
llvm-svn: 226757