Omission of memory form of PI2PD is intentional; this
does not use an MMX register and does not put the chip
into MMX mode (PI2PS, oddly enough, does).
Operands of PI2PS follow the gcc builtin, not Intel.
llvm-svn: 113388
nodes to emit shuffles and don't do isel mask matching anymore.
- Add the selection of the remaining shuffle opcode (movddup)
- Introduce two new functions to "recognize" where we may get
potential folds and add several comments to them explaining why
they are not yet in the desidered shape.
- Add more patterns to fallback the case where we select
a specific shuffle opcode as if it could fold a load, but it
can't, so remap to a valid instruction.
- Add a couple of FIXMEs to address in the following days once
there's a good solution to the current folding problem.
llvm-svn: 113369
always be disambiguated as sldtw. sldtw and sldtq with
a mem operands have the same effect, but sldtw is more
compact. Force it to sldtw, resolving rdar://8017530
llvm-svn: 113186
of a mneumonic, report operand errors with better location
info. For example, we now report:
t.s:6:14: error: invalid operand for instruction
cwtl $1
^
but we fail for common cases like:
t.s:11:4: error: invalid operand for instruction
addl $1, $1
^
because we don't know if this is supposed to be the reg/imm or imm/reg
form.
llvm-svn: 113178
failed because a subtarget feature was not enabled. Use this to
remove a bunch of hacks from the X86AsmParser for rejecting things
like popfl in 64-bit mode. Previously these hacks weren't needed,
but were important to get a message better than "invalid instruction"
when used in the wrong mode.
This also fixes bugs where pushal would not be rejected correctly in
32-bit mode (just pusha).
llvm-svn: 113166
Since mem2reg isn't run at -O0, we get a ton of reloads from the stack,
for example, before, this code:
int foo(int x, int y, int z) {
return x+y+z;
}
used to compile into:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
movl 4(%rsp), %esi
addl %edx, %esi
movl (%rsp), %edx
addl %esi, %edx
movl %edx, %eax
addq $12, %rsp
ret
Now we produce:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
addl 4(%rsp), %edx ## Folded load
addl (%rsp), %edx ## Folded load
movl %edx, %eax
addq $12, %rsp
ret
Fewer instructions and less register use = faster compiles.
llvm-svn: 113102
checking each standalone condition and decide whether emit target
specific nodes or remove the condition if it's already matched before.
llvm-svn: 113031
"Use target specific nodes instead of relying in unpckl and
unpckh pattern fragments during isel time. Also place a
depth limit in getShuffleScalarElt.
llvm-svn: 113020
- Teach getShuffleScalarElt how to handle more target
specific nodes, so the DAGCombine can make use of it.
- Add another hack to avoid the node update problem
during legalization. More description on the comments
llvm-svn: 112934
there are clearly no stores between the load and the store. This fixes
this miscompile reported as PR7833.
This breaks the test/CodeGen/X86/narrow_op-2.ll optimization, which is
safe, but awkward to prove safe. Move it to X86's README.txt.
llvm-svn: 112861
check more strict, breaking some cases not checked in the
testsuite, but also exposes some foldings not done before,
as this example:
movaps (%rdi), %xmm0
movaps (%rax), %xmm1
movaps %xmm0, %xmm2
movss %xmm1, %xmm2
shufps $36, %xmm2, %xmm0
now is generated as:
movaps (%rdi), %xmm0
movaps %xmm0, %xmm1
movlps (%rax), %xmm1
shufps $36, %xmm1, %xmm0
llvm-svn: 112753
times. This patch causes llc and llvm-mc (which both default to
verbose-asm) to print out comments after a few common shuffle
instructions which indicates the shuffle mask, e.g.:
insertps $113, %xmm3, %xmm0 ## xmm0 = zero,xmm0[1,2],xmm3[1]
unpcklps %xmm1, %xmm0 ## xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
pshufd $1, %xmm1, %xmm1 ## xmm1 = xmm1[1,0,0,0]
This is carefully factored to keep the information extraction (of the
shuffle mask) separate from the printing logic. I plan to move the
extraction part out somewhere else at some point for other parts of
the x86 backend that want to introspect on the behavior of shuffles.
llvm-svn: 112387
when the top elements of a vector are undefined. This happens all
the time for X86-64 ABI stuff because only the low 2 elements of
a 4 element vector are defined. For example, on:
_Complex float f32(_Complex float A, _Complex float B) {
return A+B;
}
We used to produce (with SSE2, SSE4.1+ uses insertps):
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $16, %xmm2, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm0
addss %xmm1, %xmm0
pshufd $16, %xmm0, %xmm1
movdqa %xmm2, %xmm0
unpcklps %xmm1, %xmm0
ret
We now produce:
_f32: ## @f32
movdqa %xmm0, %xmm2
addss %xmm1, %xmm2
pshufd $1, %xmm1, %xmm1
pshufd $1, %xmm0, %xmm3
addss %xmm1, %xmm3
movaps %xmm2, %xmm0
unpcklps %xmm3, %xmm0
ret
This implements rdar://8368414
llvm-svn: 112378
Also teach this logic how to handle target specific shuffles if
needed, this is necessary while searching recursively for zeroed
scalar elements in vector shuffle operands.
llvm-svn: 112348
Mark _alloca call as clobberring EFLAGS, otherwise some DCE might remove
other flags-clobberring stuff (e.g. cmp instructions) occuring after
_alloca call.
llvm-svn: 112034
comparison is in a different basic block from the branch. In such
cases, the comparison's operands may not have initialized virtual
registers available.
llvm-svn: 111709
general idea here is to have a group of x86 target specific nodes which are
going to be selected during lowering and then directly matched in isel.
The commit includes the addition of those specific nodes and a *bunch* of
patterns, and incrementally we're going to switch between them and what we
have right now. Both the patterns and target specific nodes can change as
we move forward with this work.
llvm-svn: 111691
- Do not clobber al during variadic calls, this is AMD64 ABI-only feature
- Emit wincall64, where necessary
Patch by Cameron Esfahani!
llvm-svn: 111289
- Make foldMemoryOperandImpl aware of 256-bit zero vectors folding and support the 128-bit counterparts of AVX too.
- Make sure MOV[AU]PS instructions are only selected when SSE1 is enabled, and duplicate the patterns to match AVX.
- Add a testcase for a simple 128-bit zero vector creation.
llvm-svn: 110946
term goal here is to be able to match enough of vector_shuffle and build_vector
so all avx intrinsics which aren't mapped to their own built-ins but to
shufflevector calls can be codegen'd. This is the first (baby) step, support
building zeroed vectors.
llvm-svn: 110897
When a register is defined by a partial load:
%reg1234:sub_32 = MOV32mr <fi#-1>; GR64:%reg1234
That load cannot be folded into an instruction using the full 64-bit register.
It would become a 64-bit load.
This is related to the recent change to have isLoadFromStackSlot return false on
a sub-register load.
llvm-svn: 110874
avoids trouble if the return type of TD->getPointerSize() is
changed to something which doesn't promote to a signed type,
and is simpler anyway.
Also, use getCopyFromReg instead of getRegister to read a
physical register's value.
llvm-svn: 110835
Apply the same approach of SSE4.1 ptest intrinsics but
create a new x86 node "testp" since AVX introduces
vtest{ps}{pd} instructions which set ZF and CF depending
on sign bit AND and ANDN of packed floating-point sources.
This is slightly different from what the "ptest" does.
Tests comming with the other 256 intrinsics tests.
llvm-svn: 110744
Next time the build is broken due to wrong library dependencies, just
try building again (if you are on some Unix and are building all LLVM
targets) or ask someone to commit the regenerated LLVMLibDeps.cmake.
llvm-svn: 110593
- The COFF backend doesn't support MingW/Cygwin at the moment, it'll report an
error, but it's still much better than random assertions from the MachO backend.
- We want to make ELF the default eventually, it's what the majority of targets use.
llvm-svn: 110197
declared during the addition of the assembler support, the additional
changes are:
- Add missing intrinsics
- Move all SSE conversion instructions in X86InstInfo64.td to the SSE.td file.
- Duplicate some patterns to AVX mode.
- Step into PCMPEST/PCMPIST custom inserter and add AVX versions.
llvm-svn: 109878
We do sometimes load from a too small stack slot when dealing with x86 arguments
(varargs and smaller-than-32-bit args). It looks like we know what we are doing
in those cases, so I am going to remove the assert instead of artifically
enlarging stack slot sizes.
The assert in storeRegToStackSlot stays in. We don't want to write beyond the
bounds of a stack slot.
llvm-svn: 109764
The size of this object isn't used for anything - technically it is of variable
size.
This avoids a false positive from the assert in
X86InstrInfo::loadRegFromStackSlot, and fixes PR7735.
llvm-svn: 109652
subregister operands like this:
%reg1040:sub_32bit<def> = MOV32rm <fi#-2>, 1, %reg0, 0, %reg0, %reg1040<imp-def>; mem:LD4[FixedStack-2](align=8)
Make them return false when subreg operands are present. VirtRegRewriter is
making bad assumptions otherwise.
This fixes PR7713.
llvm-svn: 109489
we are using AVX and no AVX version of the desired intruction is present,
this is better for incremental dev (without fallbacks it's easier to spot
what's missing). Not sure this is the best hack thought (we can also disable
all HasSSE* predicates by dinamically marking them 'false' if AVX is present)
llvm-svn: 109434
appropriate for targets without detailed instruction iterineries.
The scheduler schedules for increased instruction level parallelism in
low register pressure situation; it schedules to reduce register pressure
when the register pressure becomes high.
On x86_64, this is a win for all tests in CFP2000. It also sped up 256.bzip2
by 16%.
llvm-svn: 109300
SSE, so we can't return floating point values if this
is disabled. Detect this error for clang.
With SSE1 only, f64 is a problem; it can be done, but
neither llvm-gcc nor clang has ever generated correct
code for it. Since nobody noticed this I think it's
OK to treat it as an error for now.
This also handles SSE-sized vectors of floating point.
8207686, 8204109.
llvm-svn: 109201
rip out the implementation of X86InstrInfo::GetInstSizeInBytes.
The code being ripped out just implemented a copy and hacked up
version of the (old) instruction encoder, and is buggy and
terrible in other ways. Since "GetInstSizeInBytes" is really
only there to support the JIT's "NeedsExactSize" hook (which
noone is using), just rip out the code. I will rip out the
NeedsExactSize hook next.
This resolves rdar://7617809 - switch X86InstrInfo::GetInstSizeInBytes to use X86MCCodeEmitter
llvm-svn: 109149
asmprinter or mangler around. This is option #B for killing off
X86InstrInfo::GetInstSizeInBytes. Option #A (killing
"needsexactsize") was sent for consideration to llvmdev.
llvm-svn: 109056
1) all registers were spilled as xmm, regardless of actual size
2) win64 abi doesn't do the varargs-size-in-%al thing
Still to look into:
xmm6-15 are marked as clobbered by call instructions on win64 even though they aren't.
llvm-svn: 109035
of AsmPrinter and InstLowering into libx86 and out of the
asmprinter subdirectory. Now X86/AsmPrinter just depends on
MC stuff, not all of codegen and LLVM IR.
llvm-svn: 108782
instruction, we only want to allow the one for the current subtarget.
- This also fixes suffix matching for jmp instructions, because it eliminates
the ambiguity between 'jmpl' and 'jmpq'.
llvm-svn: 108746
- Currently includes a hack to limit ourselves to "In32BitMode" and "In64BitMode", because we don't have the other infrastructure to properly deal with setting SSE, etc. features on X86.
llvm-svn: 108677
- Unfortunate, but necessary for now to handle subtarget instruction matching. Eventually we should factor out the lower level target machine information so we don't need to do this.
llvm-svn: 108664
FP_REG_KILL instructions are still inserted, but can be disabled by passing
-live-x87 to llc. The X87FPRegKillInserterPass is going to be removed shortly.
CFG edges are partioned into bundles where the x87 stack must be allocated
identically. Code is insertad at the end of each basic block that shuffles the
live FP registers to match the outgoing bundles expectations.
This fix is in preparation for some upcoming register allocator improvements
that may extend the live range of registers beyond a basic block, similar to
LICM. It also provides a nice runtime speedup if you are building with
-mfpmath=387.
llvm-svn: 108529
-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN.
llvm-svn: 108465
this fixes rdar://8192860. Unfortunately it can only be triggered
with llc because llvm-mc matches another (correctly encoded) version
of this, so no testcase.
llvm-svn: 108454
address cannot be allocated a register is in 32-bit mode where the first
three arguments are marked inreg. In that case EAX, EDX, and ECX will be
used for argument passing.
This fixes PR7610.
llvm-svn: 108327
getMinimalPhysRegClass. It was used to produce spills, and it is better to
use the most specific class if possible.
Update getLoadStoreRegOpcode to handle GR32_AD.
llvm-svn: 108115
We are generating movaps for all XMM register copies, including scalar
floating point values. This is known to be at least as good as movss and movsd
for all known architectures up to and including Nehalem because it avoids a
partial register stall.
The SSEDomainFix pass will switch movaps to movdqa when appropriate (i.e., when
operands come from the integer unit). We don't now that switching movaps to
movapd has any benefit.
The same applies to andps -> pand.
llvm-svn: 108096
Don't try a cross-class copy. That is very unlikely anywy since return value
registers are usually register class friendly. (%EAX, %XMM0, etc).
llvm-svn: 108074
The remaining copyRegToReg calls actually check the return value (shock!), so we
cannot trivially replace them with COPY instructions.
llvm-svn: 108069
Based on a patch by Rafael Espíndola.
Attempt to make the FpSET_ST1 hack more robust, but we are still relying on
FpSET_ST0 preceeding it. This is only for supporting really weird x87 inline
asm.
We support:
FpSET_ST0
INLINEASM
FpSET_ST0
FpSET_ST1
INLINEASM
with and without kills on the arguments. We don't support:
FpSET_ST1
FpSET_ST0
INLINEASM
nor
FpSET_ST1
INLINEASM
Just Don't Do It!
llvm-svn: 108047
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
llvm-svn: 108039
it is popped, even if it is ununsed. A CopyFromReg node is too weak to represent
the required sideeffect, so insert an FpGET_ST0 instruction directly instead.
This will matter when CopyFromReg gets lowered to a generic COPY instruction.
llvm-svn: 108037
notes:
- The instructions are being added with dummy placeholder patterns using some 256
specifiers, this is not meant to work now, but since there are some multiclasses
generic enough to accept them, when we go for codegen, the stuff will be already
there.
- Add VEX encoding bits to support YMM
- Add MOVUPS and MOVAPS in the first round
- Use "Y" as suffix for those Instructions: MOVUPSYrr, ...
- All AVX instructions in X86InstrSSE.td will move soon to a new X86InstrAVX
file.
llvm-svn: 107996
U utils/TableGen/FastISelEmitter.cpp
--- Reverse-merging r107943 into '.':
U test/CodeGen/X86/fast-isel.ll
U test/CodeGen/X86/fast-isel-loads.ll
U include/llvm/Target/TargetLowering.h
U include/llvm/Support/PassNameParser.h
U include/llvm/CodeGen/FunctionLoweringInfo.h
U include/llvm/CodeGen/CallingConvLower.h
U include/llvm/CodeGen/FastISel.h
U include/llvm/CodeGen/SelectionDAGISel.h
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/CallingConvLower.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
U lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
U lib/CodeGen/SelectionDAG/FastISel.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
U lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
U lib/CodeGen/SelectionDAG/InstrEmitter.cpp
U lib/CodeGen/SelectionDAG/TargetLowering.cpp
U lib/Target/XCore/XCoreISelLowering.cpp
U lib/Target/XCore/XCoreISelLowering.h
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86ISelLowering.h
llvm-svn: 107987
jumps where possible and turning the TAILCALL marker in the instruction
asm string into a proper comment.
This eliminates a FIXME and is on the path to finishing:
rdar://7639610 - eliminate encoding and asm info for TAILJMPd TAILJMPr TAILJMPn, etc.
However, I can't eliminate the encodings for these instructions because the JIT
still exists and has its own copy of the encoder, sigh.
llvm-svn: 107946
like all other instructions, even though a segment is not
allowed. This resolves a bunch of gross hacks in the
encoder and makes LEA more consistent with the rest of the
instruction set.
No functionality change.
llvm-svn: 107934
in memory operands at the same type as hard coded segments.
This fixes problems where we'd emit the segment override after
the REX prefix on instructions like:
mov %gs:(%rdi), %rax
This fixes rdar://8127102. I have several cleanup patches coming
next.
llvm-svn: 107917
returns the start of the memory operand for an instruction.
Introduce a new "X86AddrSegment" enum to reduce # magic numbers
referring to X86 memory operand layout.
llvm-svn: 107916
This pass runs before COPY instructions are passed to copyPhysReg, so we simply
translate COPY to the proper pseudo instruction. Note that copyPhysReg does not
handle floating point stack copies.
Once COPY is used everywhere, this can be cleaned up a bit, and most of the
pseudo instructions can be removed.
llvm-svn: 107899
EXTRACT_SUBREG no longer appears as a machine instruction. Use COPY instead.
Add isCopy() checks in many places using isMoveInstr() and isExtractSubreg().
The isMoveInstr hook will be removed later.
llvm-svn: 107879
around everywhere, and also give it an InsertPt member, to enable isel
to operate at an arbitrary position within a block, rather than just
appending to a block.
llvm-svn: 107791