Fix and enable working stack-use-after-scope tests.
Add more failing tests for the feature, for fix later.
PR27453.
Patch by Vitaly Buka.
llvm-svn: 267084
I will eventually make `evaluate` function a usual parse function
rather than a function that works on a separate token list.
This is the first step toward that.
llvm-svn: 267083
WIN__DBZCHK will insert a CBZ instruction into the stream. This instruction
reserves 3 bits for the condition register (rn). As such, we must ensure that
we restrict the register to a low register. Use the tGPR class instead of GPR
to ensure that this is properly constrained. In debug builds, we would attempt
to use lr as a condition register which would silently get truncated with no
hint that the register selection was incorrect.
llvm-svn: 267080
We'd disabled them on x86 because back in the early days some host tools
couldn't handle the new load commands. This no longer holds: anyone capable of
deploying Clang should be able to deploy its copies of ar/ranlib/etc.
rdar://25254790
llvm-svn: 267075
When printing the properties required by a pass, only print the
properties that are set, and not those that are clear (only properties
that are set are verified, clear properties are "don't-care").
llvm-svn: 267070
You can instruct the linker to not discard sections even if they
are unused and --gc-sections option is given. The linker script
command for doing that is KEEP. The syntax is KEEP(foo) where foo
is a section name. KEEP commands are written in SECTIONS command,
so you can specify the order of sections *and* which sections
will be kept.
Each sub-command in SECTIONS command are translated into SectionRule
object. Previously, each SectionRule has `Keep` bit. However,
if you think about it, this hid information in too deep in elements
of a list. Semantically, KEEP commands aren't really related to
SECTIONS subcommands. We can keep the section list for KEEP in a
separate list. This patch does that.
llvm-svn: 267065
Since there is a copy in every translation unit that uses them, they can
be omitted from the symbol table if the address is not significant.
This still doesn't catch as many cases as the gold plugin. The
difference is that we check canBeOmittedFromSymbolTable in each file and
use lazy loading which limits what it can do. Gold checks it in the merged file.
I think the correct way of getting the same results as gold is just to
cache in the IR the result of canBeOmittedFromSymbolTable.
llvm-svn: 267063
Since r265060 LLVM infers correct __nvvm_reflect attributes, so
explicit declaration of __nvvm_reflect() is no longer needed.
Differential Revision: http://reviews.llvm.org/D19074
llvm-svn: 267062
Summary:
Adds the initial version of a runtime library for the new
EfficiencySanitizer ("esan") family of tools. The library includes:
+ Slowpath code via callouts from the compiler instrumentation for
each memory access.
+ Registration of atexit() to call finalization code.
+ Runtime option flags controlled by the environment variable
ESAN_OPTIONS. The common sanitizer flags are supported such as
verbosity and log_path.
+ An initial simple test.
Still TODO: common code for libc interceptors and shadow memory mapping,
and tool-specific code for shadow state updating.
Reviewers: eugenis, vitalybuka, aizatsky, filcab
Subscribers: filcab, vkalintiris, kubabrecka, llvm-commits, zhaoqin, kcc
Differential Revision: http://reviews.llvm.org/D19168
llvm-svn: 267060
Summary:
Adds a framework to enable the instrumentation pass for the new
EfficiencySanitizer ("esan") family of tools. Adds a flag for esan's
cache fragmentation tool via -fsanitize=efficiency-cache-frag.
Adds appropriate tests for the new flag.
Reviewers: eugenis, vitalybuka, aizatsky, filcab
Subscribers: filcab, kubabrecka, llvm-commits, zhaoqin, kcc
Differential Revision: http://reviews.llvm.org/D19169
llvm-svn: 267059
Summary:
Adds an instrumentation pass for the new EfficiencySanitizer ("esan")
performance tuning family of tools. Multiple tools will be supported
within the same framework. Preliminary support for a cache fragmentation
tool is included here.
The shared instrumentation includes:
+ Turn mem{set,cpy,move} instrinsics into library calls.
+ Slowpath instrumentation of loads and stores via callouts to
the runtime library.
+ Fastpath instrumentation will be per-tool.
+ Which memory accesses to ignore will be per-tool.
Reviewers: eugenis, vitalybuka, aizatsky, filcab
Subscribers: filcab, vkalintiris, pcc, silvas, llvm-commits, zhaoqin, kcc
Differential Revision: http://reviews.llvm.org/D19167
llvm-svn: 267058
Summary: As per title. This will help work on the C API.
Reviewers: Wallbraker, whitequark, joker.eph, echristo, rafael
Subscribers: joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D19173
llvm-svn: 267057
InstrProfSymtab::create can fail with instrprof_error::malformed, but
this error is silently dropped. Propagate the error up to the caller so
we fail early.
Eventually, I'd like to transition ProfileData over to the new Error
class so we can't ignore hard failures like this.
llvm-svn: 267055
Restructure the implict floating point to integer conversions so that
interesting sub-groups are under different flags. Breakdown of warnings:
No warning:
Exact conversions from floating point to integer:
int x = 10.0;
int x = 1e10;
-Wliteral-conversion - Floating point literal to integer with rounding:
int x = 5.5;
int x = -3.4;
-Wfloat-conversion - All conversions not covered by the above two:
int x = GetFloat();
int x = 5.5 + 3.5;
-Wfloat-zero-conversion - The expression converted has a non-zero floating
point value that gets converted to a zero integer value, excluded the cases
falling under -Wliteral-conversion. Subset of -Wfloat-conversion.
int x = 1.0 / 2.0;
-Wfloat-overflow-conversion - The floating point value is outside the range
of the integer type, exluding cases from -Wliteral conversion. Subset of
-Wfloat-conversion.
char x = 500;
char x = -1000;
-Wfloat-bool-conversion - Any conversion of a floating point type to bool.
Subset of -Wfloat-conversion.
if (GetFloat()) {}
bool x = 5.0;
-Wfloat-bool-constant-conversion - Conversion of a compile time evaluatable
floating point value to bool. Subset of -Wfloat-bool-conversion.
bool x = 1.0;
bool x = 4.0 / 20.0;
Also add EvaluateAsFloat to Sema, which is similar to EvaluateAsInt, but for
floating point values.
llvm-svn: 267054
splitting edges.
MachineBasicBlock::SplitCriticalEdges will crash if a nullptr would have
been passed for the Pass argument. Do not allow that by turning this
argument into a reference.
The alternative would have been to make the Pass a truly optional
argument, but although this is easy to do, I was afraid users using it
like this would not be aware the livness information, dominator tree and
such would silently be broken.
llvm-svn: 267052
This allows ulittle* and ubig* types to be visualized properly
in VS.
Differential Revision: http://reviews.llvm.org/D19339
Reviewed By: Aaron Ballman
llvm-svn: 267050
PDB parsing code was hand-rolled into llvm-pdbdump. This patch moves the
parsing of this code into DebugInfoPDB and makes the dumper use this.
This is achieved by implementing the skeleton of RawPdbSession, the
non-DIA counterpart to the existing PDB read interface. None of the type /
source file / etc information is accessible yet, so this implementation is
not yet close to achieving parity with the DIA counterpart, but the
RawSession class simply holds a reference to a PDBFile class which handles
parsing the file format. Additionally a PDBStream class is introduced
which allows accessing the bytes of a particular stream in a PDB file.
Differential Revision: http://reviews.llvm.org/D19343
Reviewed By: majnemer
llvm-svn: 267049
I noticed that I was looking for the definition of SymPair when hacking
the Writer, only to find that it is just a pair of DefinedRegular symbols.
I don't think it provides more values than the cost of using brainpower
to memorize the type. I didn't roll back r266317, which introduced SymPair,
because the patch removes code repetitions. I ported that change to new
code.
llvm-svn: 267047
Introduce canSplitCriticalEdge, so that clients can now query whether or
not a critical edge can be split without actually needing to split it.
This may be useful when gathering information for cost models for
instance.
llvm-svn: 267046
The previous allocation code was over-estimating the amount of memory required.
No test case: we don't currently have a good way to detect conervative
over-allocation.
llvm-svn: 267041