The current standard to llvm conversion pass lowers subview ops only if
dynamic offsets are provided. This commit extends the lowering with a
code path that uses the constant offset of the target memref for the
subview op lowering (see Example 3 of the subview op definition for an
example) if no dynamic offsets are provided.
Differential Revision: https://reviews.llvm.org/D74280
The existing (default) calling convention for memrefs in standard-to-LLVM
conversion was motivated by interfacing with LLVM IR produced from C sources.
In particular, it passes a pointer to the memref descriptor structure when
calling the function. Therefore, the descriptor is allocated on stack before
the call. This convention leads to several problems. PR44644 indicates a
problem with stack exhaustion when calling functions with memref-typed
arguments in a loop. Allocating outside of the loop may lead to concurrent
access problems in case the loop is parallel. When targeting GPUs, the contents
of the stack-allocated memory for the descriptor (passed by pointer) needs to
be explicitly copied to the device. Using an aggregate type makes it impossible
to attach pointer-specific argument attributes pertaining to alignment and
aliasing in the LLVM dialect.
Change the default calling convention for memrefs in standard-to-LLVM
conversion to transform a memref into a list of arguments, each of primitive
type, that are comprised in the memref descriptor. This avoids stack allocation
for ranked memrefs (and thus stack exhaustion and potential concurrent access
problems) and simplifies the device function invocation on GPUs.
Provide an option in the standard-to-LLVM conversion to generate auxiliary
wrapper function with the same interface as the previous calling convention,
compatible with LLVM IR porduced from C sources. These auxiliary functions
pack the individual values into a descriptor structure or unpack it. They also
handle descriptor stack allocation if necessary, serving as an allocation
scope: the memory reserved by `alloca` will be freed on exiting the auxiliary
function.
The effect of this change on MLIR-generated only LLVM IR is minimal. When
interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration
only needs to require auxiliary functions and change the function name to call
the wrapper function instead of the original function.
This also opens the door to forwarding aliasing and alignment information from
memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
The existing lowering of gpu.block_dim added a global variable with
the WorkGroupSize decoration. This raises an error within
Vulkan/SPIR-V validation since Vulkan requires this to have a constant
initializer. This is not yet supported in SPIR-V dialect. Changing the
lowering to return the workgroup size as a constant value instead,
obtained from spv.entry_point_abi attribute gets around the issue for
now. The validation goes through since the workgroup size is specified
using spv.execution_mode operation.
This revision adds support in the declarative assembly form for printing attributes with buildable types without the type, and moves several more parsers over to the declarative form.
Differential Revision: https://reviews.llvm.org/D74276
Summary:
This revision adds a utility to generate debug locations from the IR during compilation, by snapshotting to a output stream and using the locations that operations were dumped in that stream. The new locations may either;
* Replace the original location of the operation.
old:
loc("original_source.cpp":1:1)
new:
loc("snapshot_source.mlir":10:10)
* Fuse with the original locations as NamedLocs with a specific tag.
old:
loc("original_source.cpp":1:1)
new:
loc(fused["original_source.cpp":1:1, "snapshot"("snapshot_source.mlir":10:10)])
This feature may be used by a debugger to display the code at various different levels of the IR. It would also be able to show the different levels of IR attached to a specific source line in the original source file.
This feature may also be used to generate locations for operations generated during compilation, that don't necessarily have a user source location to attach to.
This requires changes in the printer to track the locations of operations emitted in the stream. Moving forward we need to properly(and efficiently) track the number of newlines emitted to the stream during printing.
Differential Revision: https://reviews.llvm.org/D74019
Summary: This is the most common operation performed on a CallOpInterface. This just moves the existing functionality from the CallGraph so that other users can access it.
Differential Revision: https://reviews.llvm.org/D74250
Summary: This document provides insight on the rationale and the design of Symbols in MLIR, and why they are necessary.
Differential Revision: https://reviews.llvm.org/D73590
Summary:
This revision adds support for printing pass options as part of the normal help description. This also moves registered passes and pipelines into different sections of the help.
Example:
```
Compiler passes to run
--pass-pipeline - ...
Passes:
--affine-data-copy-generate - ...
--convert-gpu-to-spirv - ...
--workgroup-size=<long> - ...
--test-options-pass - ...
--list=<int> - ...
--string=<string> - ...
--string-list=<string> - ...
Pass Pipelines:
--test-options-pass-pipeline - ...
--list=<int> - ...
--string=<string> - ...
--string-list=<string> - ...
```
Differential Revision: https://reviews.llvm.org/D74246
Summary:
The `vector.fma` operation is portable enough across targets that we do not want
to keep it wrapped under `vector.outerproduct` and `llvm.intrin.fmuladd`.
This revision lifts the op into the vector dialect and implements the lowering to LLVM by using two patterns:
1. a pattern that lowers from n-D to (n-1)-D by unrolling when n > 2
2. a pattern that converts from 1-D to the proper LLVM representation
Reviewers: ftynse, stellaraccident, aartbik, dcaballe, jsetoain, tetuante
Reviewed By: aartbik
Subscribers: fhahn, dcaballe, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74075
Summary:
This revision exposes the portable `llvm.fma` intrinsic in LLVMOps and uses it
in lieu of `llvm.fmuladd` when lowering the `vector.outerproduct` op to LLVM.
This guarantees proper `fma` instructions will be emitted if the target ISA
supports it.
`llvm.fmuladd` does not have this guarantee in its semantics, despite evidence
that the proper x86 instructions are emitted.
For more details, see https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic.
Reviewers: ftynse, aartbik, dcaballe, fhahn
Reviewed By: aartbik
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74219
The initial implementation of the fusion operation exposes a method to
fuse a consumer with its producer, when
- both the producer and consumer operate on tensors
- the producer has only a single result value
- the producer has only "parallel" iterator types
A new interface method hasTensorSemantics is added to verify that an
operation has all operands and results of type RankedTensorType.
Differential Revision: https://reviews.llvm.org/D74172
Summary: In some edge cases the default APFloat printer will generate something that we can't parse back in. In these cases, fallback to using hex instead.
Differential Revision: https://reviews.llvm.org/D74181
Technically a leak in tblgen is harmless, but this makes asan builds of
mlir very noisy. Just use a SpecificBumpPtrAllocator that knows how to
clean up after itself.
This reverts commit 64871f778d.
ASAN indicates a use-after-free in in mlir::canFuseLoops(mlir::AffineForOp, mlir::AffineForOp, unsigned int, mlir::ComputationSliceState*) lib/Transforms/Utils/LoopFusionUtils.cpp:202:41
mlir-opt needs to link against MLIRLoopAnalysis
This shouldn't be needed but MLIR "hack" for
"whole-archive" linking is not compatible with
CMake transitive dependencies management.
Differential Revision: https://reviews.llvm.org/D74097
Summary:
This revision adds basic support for emitting line table information when exporting to LLVMIR. We don't yet have a story for supporting all of the LLVM debug metadata, so this revision stubs some features(like subprograms) to enable emitting line tables.
Differential Revision: https://reviews.llvm.org/D73934
Summary:
Previously, vector.contract did not allow an empty set of
free or batch dimensions (K = 0) which defines a basic
reduction into a scalar (like a dot product). This CL
relaxes that restriction. Also adds constraints on
element type of operands and results. With tests.
Reviewers: nicolasvasilache, andydavis1, rriddle
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74014
Summary:
[mlir][VectorOps] Support vector transfer_read/write unrolling for memrefs with vector element type. When unrolling vector transfer read/write on memrefs with vector element type, the indices used to index the memref argument must be updated to reflect the unrolled operation. However, in the case of memrefs with vector element type, we need to be careful to only update the relevant memref indices.
For example, a vector transfer read with the following source/result types, memref<6x2x1xvector<2x4xf32>>, vector<2x1x2x4xf32>, should only update memref indices 1 and 2 during unrolling.
Reviewers: nicolasvasilache, aartbik
Reviewed By: nicolasvasilache, aartbik
Subscribers: lebedev.ri, Joonsoo, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72965
Summary:
Adds affine loop fusion transformation function to LoopFusionUtils.
Updates TestLoopFusion utility to run loop fusion transformation until a fixed point is reached.
Adds unit tests to test the transformation.
Reviewers: bondhugula, dcaballe, nicolasvasilache
Reviewed By: bondhugula, dcaballe
Subscribers: Joonsoo, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73190
Summary:
Add ShapeCastOp to the vector ops dialect.
The shape_cast operation casts between an n-D source vector shape and a k-D result vector shape (the element type remains the same).
Reviewers: nicolasvasilache, aartbik
Reviewed By: nicolasvasilache
Subscribers: Joonsoo, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73635
Summary: Optional regions are supported in the generic op print/parse form, update the docs to match.
Differential Revision: https://reviews.llvm.org/D74061
Summary:
MLIRAnalysis depended on MLIRVectorOps
MLIRVectorOps depended on MLIRAnalysis for Loop information.
Both of these can be solved by factoring out libraries related to loop
analysis into their own library. The new MLIRLoopAnalysis might be
better off with the Loop Dialect in the future.
Reviewers: nicolasvasilache, rriddle!, mehdi_amini
Reviewed By: mehdi_amini
Subscribers: Joonsoo, vchuravy, merge_guards_bot, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73655
Summary:
This breaks a cyclic library dependency where MLIRPass used the verifier
in MLIRAnalysis, but MLIRAnalysis also contained passes used for testing.
The presence of the test passes here is archaeology, predating
test/lib/Transform.
Reviewers: rriddle
Reviewed By: rriddle
Subscribers: merge_guards_bot, mgorny, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74067
The recent refactoring of build files broke building with the MIR CUDA
integration enabled. This fixes it by adding some additional
dependencies to mlir-opt.
Differential Revision: https://reviews.llvm.org/D74041
Summary:
It is often needed to map entire ranges rather than single values. To avoid
writing the same for loop every time, I have added an overload to the map
method.
Differential Revision: https://reviews.llvm.org/D73894
This binplaces `mlir-translate`, `mlir-cuda-runner`, and `mlir-cpu-runner` when building the CMake install target.
Differential Revision: https://reviews.llvm.org/D73986
We were using normal dictionary attribute for target environment
specification. It becomes cumbersome with more and more fields.
This commit changes the modelling to a dialect-specific attribute,
where we can have control over its storage and assembly form.
Differential Revision: https://reviews.llvm.org/D73959
This is fixing a build error:
error: non-constant-expression cannot be narrowed from type 'unsigned int' to 'Region::iterator::difference_type' (aka 'int') in initializer list
Fix pr44767
Summary:
This patch is a step towards enabling BUILD_SHARED_LIBS=on, which
builds most libraries as DLLs instead of statically linked libraries.
The main effect of this is that incremental build times are greatly
reduced, since usually only one library need be relinked in response
to isolated code changes.
The bulk of this patch is fixing incorrect usage of cmake, where library
dependencies are listed under add_dependencies rather than under
target_link_libraries or under the LINK_LIBS tag. Correct usage should be
like this:
add_dependencies(MLIRfoo MLIRfooIncGen)
target_link_libraries(MLIRfoo MLIRlib1 MLIRlib2)
A separate issue is that in cmake, dependencies between static libraries
are automatically included in dependencies. In the above example, if MLIBlib1
depends on MLIRlib2, then it is sufficient to have only MLIRlib1 in the
target_link_libraries. When compiling with shared libraries, it is necessary
to have both MLIRlib1 and MLIRlib2 specified if MLIRfoo uses symbols from both.
Reviewers: mravishankar, antiagainst, nicolasvasilache, vchuravy, inouehrs, mehdi_amini, jdoerfert
Reviewed By: nicolasvasilache, mehdi_amini
Subscribers: Joonsoo, merge_guards_bot, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73653
This commit adds two resource limits, max_compute_workgroup_size
and max_compute_workgroup_invocations as resource limits to
the target environment. They are not used at the current moment,
but they will affect the SPIR-V CodeGen. Adding for now to have
a proper target environment modelling.
Differential Revision: https://reviews.llvm.org/D73905
This revision makes sure that errors emitted outside of testing are treated as fatal errors. This avoids the current silent failures that occur when the format is invalid.
Summary:
Currently BuildableType is assumed to be preceded by a builder. This prevents constructing types that don't have a callable 'get' method with the builder. This revision reworks the format to be like attribute builders, i.e. by accepting $_builder within the format itself.
Differential Revision: https://reviews.llvm.org/D73736
Summary: This revision add support for accepting a few type constraints, e.g. AllTypesMatch, when inferring types for operands and results. This is used to remove the c++ parsers for several additional operations.
Differential Revision: https://reviews.llvm.org/D73735
Summary:
Replace the generic zero- and one-result builders in LLVM::CallOp with a custom
builder that takes an LLVMFuncOp, which can be used to extract the result type
and create the symbol reference attribute. This is merely a convenience for
upcoming changes. The ODS-generated builders remain present.
Introduce LLVM::LLVMType::isVoidTy by analogy with the underlying LLVM type.
Differential Revision: https://reviews.llvm.org/D73895
LinalgDependenceGraph was not updated after successful producer-consumer
fusion for linalg ops. In this patch it is fixed by reconstructing
LinalgDependenceGraph on every iteration. This is very ineffective and
should be improved by updating LDGraph only when it is necessary.
The patterns for converting `std.alloc` and `std.dealoc` can be configured to
use `llvm.alloca` instead of calling `malloc` and `free`. This configuration
has been only possible through a command-line flag, despite the presence of a
(misleading) parameter in the pass constructor. Use the parameter instead and
only initalize it from the command line flags if the pass is constructed from
the mlir-opt registration.
Summary:
These hooks were originally introduced to support passes deriving the
StandardToLLVM conversion, in particular converting types from different
dialects to LLVM types in a single-step conversion. They are no longer in use
since the pass and conversion infrastructure has evolved sufficiently to make
defining new passes with exactly the same functionality simple through the use
of populate* functions, conversion targets and type converters. Remove the
hooks. Any users of this hooks can call the dialect conversion infrastructure
directly instead, which is likely to require less LoC than these hooks.
Differential Revision: https://reviews.llvm.org/D73795
Summary:
In the original design, gpu.launch required explicit capture of uses
and passing them as operands to the gpu.launch operation. This was
motivated by infrastructure restrictions rather than design. This
change lifts the requirement and removes the concept of kernel
arguments from gpu.launch. Instead, the kernel outlining
transformation now does the explicit capturing.
This is a breaking change for users of gpu.launch.
Differential Revision: https://reviews.llvm.org/D73769
Summary:
Start filling in some requirements for the shape function descriptions
that will be used to derive shape computations. This requiement part may
later be reworked to be part of the "context" section of shape dialect. Without
examples this may be a bit too abstract but I hope not (given mappings to
existing shape functions).
Differential Revision: https://reviews.llvm.org/D73572
Seen on gcc 8, in release mode & assertions off warnings about logger,
made all statements referencing logger inside LLVM_DEBUG blocks and
ifdef a few variables only used in debug.
This is mechanical fix to get CI green.
Summary:
This patch introduces an alternative calling convention for
MemRef function arguments in LLVM dialect. It converts MemRef
function arguments to LLVM bare pointers to the MemRef element
type instead of creating a MemRef descriptor. Bare pointers are
then promoted to a MemRef descriptors at the beginning of the
function. This calling convention is only enabled with a flag.
Reviewers: ftynse, bondhugula, nicolasvasilache, rriddle, mehdi_amini
Reviewed By: ftynse, rriddle, mehdi_amini
Subscribers: Joonsoo, flaub, merge_guards_bot, jholewinski, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72802
This revision does the following post-commit cleanups:
1. don't use -1 magic constants,
2. drop commented out old test that does not belong here,
3. reformat and add a proper clang-format off on a CHECK directive.
Summary:
This revision beefs up the debug logging within dialect conversion. Given the nature of multi-level legalization, and legalization in general, it is one of the harder pieces of infrastructure to debug. This revision adds nice formatting to make the output log easier to parse:
```
Legalizing operation : 'std.constant'(0x608000002420) {
* Fold {
} -> FAILURE : unable to fold
* Pattern : 'std.constant -> ()' {
} -> FAILURE : pattern failed to match
* Pattern : 'std.constant -> ()' {
} -> FAILURE : pattern failed to match
* Pattern : 'std.constant -> (spv.constant)' {
** Insert : 'spv.constant'(0x608000002c20)
** Replace : 'std.constant'(0x608000002420)
//===-------------------------------------------===//
Legalizing operation : 'spv.constant'(0x608000002c20) {
} -> SUCCESS : operation marked legal by the target
//===-------------------------------------------===//
} -> SUCCESS : pattern applied successfully
} -> SUCCESS
```
Differential Revision: https://reviews.llvm.org/D73747
Summary:
Rationale:
When lowering to LLVM for different rank insert (n vs k), the offset
arrays needs to drop one dimension (becomes n-1), but the strides
array needs to be preserved (remains k). With regression test.
Note that this example was actually in the documentation, so
extra important to do it right :-)
Reviewers: nicolasvasilache, andydavis1, ftynse
Reviewed By: nicolasvasilache, ftynse
Subscribers: Joonsoo, merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73733
Summary:
After the `subview` operation was migrated from Linalg to Standard, it changed
semantics and does not guarantee the absence of out-of-bounds accesses through
the created view anymore. Compute the size of the subview to make sure it
always fits within the view (subviews in last iterations of the loops may be
smaller than those in other iterations).
Differential Revision: https://reviews.llvm.org/D73614
This commit adds a pattern to lower linalg.generic for reduction
to spv.GroupNonUniform* ops. Right now this only supports integer
reduction on 1-D input memref. Shader entry point ABI is queried
to make sure that the input memref's shape matches the local
workgroup's invocation configuration. This makes sure that the
workload fits in one local workgroup so that we can leverage
SPIR-V group non-uniform operations.
linglg.generic is a structured op that preserves the right level
of information. It is easier to recognize reduction at this level
than performing analysis on loops.
This commit also exposes `getElementPtr` in SPIRVLowering.h given
that it's a generally useful utility function.
Differential Revision: https://reviews.llvm.org/D73437
Summary:
The current code assumes that one always maps at least one loop to block
dimensions and at least one loop to thread dimensions. If either is not
the case, a loop would get mapped twice.
Differential Revision: https://reviews.llvm.org/D73685
The refactored MemRefType::get() calls all intend to clone from another
memref type, with some modifications. In fact, some calls dropped memory space
during the cloning. Migrate them to the cloning API so that nothing gets
dropped if they are not explicitly listed.
It's close to NFC but not quite, as it helps with propagating memory spaces in
some places.
Differential Revision: https://reviews.llvm.org/D73296
Summary:
MLIR materializes various enumeration-based LLVM IR operands as enumeration
attributes using ODS. This requires bidirectional conversion between different
but very similar enums, currently hardcoded. Extend the ODS modeling of
LLVM-specific enumeration attributes to include the name of the corresponding
enum in the LLVM C++ API as well as the names of specific enumerants. Use this
new information to automatically generate the conversion functions between enum
attributes and LLVM API enums in the two-way conversion between the LLVM
dialect and LLVM IR proper.
Differential Revision: https://reviews.llvm.org/D73468
Summary:
This revision switches over many operations to use the declarative methods for defining the assembly specification. This updates operations in the NVVM, ROCDL, Standard, and VectorOps dialects.
Differential Revision: https://reviews.llvm.org/D73407
Summary:
This revision add support, and testing, for generating the parser and printer from the declarative operation format.
Differential Revision: https://reviews.llvm.org/D73406
Summary:
This is the first revision in a series that adds support for declaratively specifying the asm format of an operation. This revision
focuses solely on parsing the format. Future revisions will add support for generating the proper parser/printer, as well as
transitioning the syntax definition of many existing operations.
This was originally proposed here:
https://llvm.discourse.group/t/rfc-declarative-op-assembly-format/340
Differential Revision: https://reviews.llvm.org/D73405
Summary:
In some cases, one may want to use different names for C++ symbol of an
enumerand from its string representation. In particular, in the LLVM dialect
for, e.g., Linkage, we would like to preserve the same enumerand names as LLVM
API and the same textual IR form as LLVM IR, yet the two are different
(CamelCase vs snake_case with additional limitations on not being a C++
keyword).
Modify EnumAttrCaseInfo in OpBase.td to include both the integer value and its
string representation. By default, this representation is the same as C++
symbol name. Introduce new IntStrAttrCaseBase that allows one to use different
names. Exercise it for LLVM Dialect Linkage attribute. Other attributes will
follow as separate changes.
Differential Revision: https://reviews.llvm.org/D73362
Summary:
In the scope of the lowering phase from GPU to ROCDL, the intructions for the conversion patterns seems to be wrong.
According to https://github.com/ROCm-Developer-Tools/HIP/blob/master/include/hip/hcc_detail/math_fwd.h the instructions need two underscores in the beginning instead of one.
Reviewers: nicolasvasilache, herhut, rriddle
Reviewed By: herhut, rriddle
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73535
Summary:
The 'gpu.terminator' operation is used as the terminator for the
regions of gpu.launch. This is to disambugaute them from the
return operation on 'gpu.func' functions.
This is a breaking change and users of the gpu dialect will need
to adapt their code when producting 'gpu.launch' operations.
Reviewers: nicolasvasilache
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73620
StrEq has some magic inside that should do the explicit conversion from
StringRef to std::string, but apparently this doesn't work with GCC 5.
Just use EXPECT_EQ, it does the same thing with less magic.
Summary:
This will help catch improper use of the MLIR API's. In particular, this
catches an error that was manifesting as nondeterministic assertion
failures (the nondeterminism was due to the failure happening only when the
StorageUniquer's DenseMap's probing happened to compare two specific
keys).
No test. The fact that all the existing tests pass with this additional
invariant gives confidence that it is correct/useful.
Differential Revision: https://reviews.llvm.org/D73645
Summary:
Canonicalization and folding patterns in StandardOps may interfere with the needs
of Linalg. This revision introduces specific foldings for dynamic memrefs that can
be proven to be static.
Very concretely:
Determines whether it is possible to fold it away in the parent Linalg op:
```mlir
%1 = memref_cast %0 : memref<8x16xf32> to memref<?x?xf32>
%2 = linalg.slice %1 ... : memref<?x?xf32> ...
// or
%1 = memref_cast %0 : memref<8x16xf32, affine_map<(i, j)->(16 * i + j)>>
to memref<?x?xf32>
linalg.generic(%1 ...) : memref<?x?xf32> ...
```
into
```mlir
%2 = linalg.slice %0 ... : memref<8x16xf32> ...
// or
linalg.generic(%0 ... : memref<8x16xf32, affine_map<(i, j)->(16 * i + j)>>
```
Reviewers: ftynse, aartbik, jsetoain, tetuante, asaadaldien
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73565
Summary:
Barrier is a simple operation that takes no arguments and returns
nothing, but implies a side effect (synchronization of all threads)
Reviewers: jdoerfert
Subscribers: mgorny, guansong, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72400